You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/api/test/testVector.py

154 lines
5.6 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import swig_paddle
import util
import numpy as np
import unittest
class TestIVector(unittest.TestCase):
def test_createZero(self):
m = swig_paddle.IVector.createZero(10, False)
self.assertIsNotNone(m)
for i in xrange(10):
self.assertEqual(m[i], 0)
m[i] = i
self.assertEqual(m[i], i)
m = swig_paddle.IVector.createZero(10)
self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(m.getData(), [0] * 10)
def test_create(self):
m = swig_paddle.IVector.create(range(10), False)
self.assertIsNotNone(m)
for i in xrange(10):
self.assertEqual(m[i], i)
m = swig_paddle.IVector.create(range(10))
self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(m.getData(), range(10))
def test_cpu_numpy(self):
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
iv = swig_paddle.IVector.createCpuVectorFromNumpy(vec, False)
self.assertEqual(vec.shape[0], int(iv.__len__()))
vec[4] = 832
for i in xrange(len(iv)):
self.assertEqual(vec[i], iv[i])
vec2 = iv.toNumpyArrayInplace()
vec2[1] = 384
for i in xrange(len(iv)):
self.assertEqual(vec[i], iv[i])
self.assertEqual(vec2[i], iv[i])
def test_gpu_numpy(self):
if swig_paddle.isGpuVersion():
vec = swig_paddle.IVector.create(range(0, 10), True)
assert isinstance(vec, swig_paddle.IVector)
self.assertTrue(vec.isGpu())
self.assertEqual(vec.getData(), range(0, 10))
num_arr = vec.copyToNumpyArray()
assert isinstance(num_arr, np.ndarray) # for code hint.
num_arr[4] = 7
self.assertEquals(vec.getData(), range(0, 10))
vec.copyFromNumpyArray(num_arr)
expect_vec = range(0, 10)
expect_vec[4] = 7
self.assertEqual(vec.getData(), expect_vec)
def test_numpy(self):
vec = np.array([1, 3, 4, 65, 78, 1, 4], dtype="int32")
iv = swig_paddle.IVector.createVectorFromNumpy(vec)
self.assertEqual(iv.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(iv.getData(), list(vec))
class TestVector(unittest.TestCase):
def testCreateZero(self):
v = swig_paddle.Vector.createZero(10, False)
self.assertIsNotNone(v)
for i in xrange(len(v)):
self.assertTrue(util.doubleEqual(v[i], 0))
v[i] = i
self.assertTrue(util.doubleEqual(v[i], i))
v = swig_paddle.Vector.createZero(10)
self.assertEqual(v.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(v.getData(), [0] * 10)
def testCreate(self):
v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)], False)
self.assertIsNotNone(v)
for i in xrange(len(v)):
self.assertTrue(util.doubleEqual(v[i], i / 100.0))
self.assertEqual(100, len(v))
v = swig_paddle.Vector.create([x / 100.0 for x in xrange(100)])
self.assertEqual(v.isGpu(), swig_paddle.isUsingGpu())
self.assertEqual(100, len(v))
vdata = v.getData()
for i in xrange(len(v)):
self.assertTrue(util.doubleEqual(vdata[i], i / 100.0))
def testCpuNumpy(self):
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
vec = swig_paddle.Vector.createCpuVectorFromNumpy(numpy_arr, False)
assert isinstance(vec, swig_paddle.Vector)
numpy_arr[0] = 0.1
for n, v in zip(numpy_arr, vec):
self.assertTrue(util.doubleEqual(n, v))
numpy_2 = vec.toNumpyArrayInplace()
vec[0] = 1.3
for x, y in zip(numpy_arr, numpy_2):
self.assertTrue(util.doubleEqual(x, y))
for x, y in zip(numpy_arr, vec):
self.assertTrue(util.doubleEqual(x, y))
numpy_3 = vec.copyToNumpyArray()
numpy_3[0] = 0.4
self.assertTrue(util.doubleEqual(vec[0], 1.3))
self.assertTrue(util.doubleEqual(numpy_3[0], 0.4))
for i in xrange(1, len(numpy_3)):
util.doubleEqual(numpy_3[i], vec[i])
def testNumpy(self):
numpy_arr = np.array([1.2, 2.3, 3.4, 4.5], dtype="float32")
vec = swig_paddle.Vector.createVectorFromNumpy(numpy_arr)
self.assertEqual(vec.isGpu(), swig_paddle.isUsingGpu())
vecData = vec.getData()
for n, v in zip(numpy_arr, vecData):
self.assertTrue(util.doubleEqual(n, v))
def testCopyFromNumpy(self):
vec = swig_paddle.Vector.createZero(1, False)
arr = np.array([1.3, 3.2, 2.4], dtype="float32")
vec.copyFromNumpyArray(arr)
for i in xrange(len(vec)):
self.assertTrue(util.doubleEqual(vec[i], arr[i]))
if __name__ == '__main__':
swig_paddle.initPaddle("--use_gpu=0")
suite = unittest.TestLoader().loadTestsFromTestCase(TestVector)
unittest.TextTestRunner().run(suite)
if swig_paddle.isGpuVersion():
swig_paddle.setUseGpu(True)
unittest.main()