You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/train/imdb_demo/generate_program.py

73 lines
2.4 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import paddle
import logging
import paddle.fluid as fluid
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)
def load_vocab(filename):
vocab = {}
with open(filename) as f:
wid = 0
for line in f:
vocab[line.strip()] = wid
wid += 1
vocab["<unk>"] = len(vocab)
return vocab
if __name__ == "__main__":
vocab = load_vocab('imdb.vocab')
dict_dim = len(vocab)
model_name = sys.argv[1]
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
dataset = fluid.DatasetFactory().create_dataset()
dataset.set_batch_size(128)
dataset.set_pipe_command("python imdb_reader.py")
dataset.set_use_var([data, label])
desc = dataset.proto_desc
with open("data.proto", "w") as f:
f.write(dataset.desc())
from nets import *
if model_name == 'cnn':
logger.info("Generate program description of CNN net")
avg_cost, acc, prediction = cnn_net(data, label, dict_dim)
elif model_name == 'bow':
logger.info("Generate program description of BOW net")
avg_cost, acc, prediction = bow_net(data, label, dict_dim)
else:
logger.error("no such model: " + model_name)
exit(0)
# optimizer = fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
optimizer.minimize(avg_cost)
with open(model_name + "_main_program", "wb") as f:
f.write(fluid.default_main_program().desc.serialize_to_string())
with open(model_name + "_startup_program", "wb") as f:
f.write(fluid.default_startup_program().desc.serialize_to_string())