You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4.6 KiB
4.6 KiB
Release v0.10.0
New Features
- Support rectangle input for CNN.
- Support stride pooling for seqlastin and seqfirstin.
- Expose seq_concat_layer/seq_reshape_layer in
trainer_config_helpers
. - Add dataset package
- CIFAR, MNIST, IMDB, WMT14, CONLL05, movielens, imikolov.
- Add Priorbox layer for Single Shot Multibox Detection.
- Add smooth L1 cost.
- Add data reader creator and data reader decorator for v2 API.
- Add the cpu implementation of cmrnorm-projection.
Improvements
- Speedup the backward of average layer on GPU.
- Reorganize the catalog of doc/ and refine several docs.
- Add Travis-CI for checking dead links.
- Add a example for explaining sparse_vector.
- Add Relu in layer_math.py
- Simplify data processing flow for quick start.
- Support CUDNN Deconv.
- Add data feeder for v2 API.
- Support predicting the samples from sys.stdin for sentiment demo.
- Provide multi-proccess interface for image preprocessing.
- Add benchmark document for v1 API.
- Add Relu in layer_math.py.
- Add packages for automatically downloading public datasets.
- Rename Argument::sumCost to Argument::sum since Argument does not have to have any relationship with cost.
- Add a new
TensorExpression
implementation for matrix-related expression evaluations. - Add Lazy Assignment for optimize the calculation of multiple expressions.
- Add
Function
to reconstruct the computation function.- PadFunc and PadGradFunc.
- ContextProjectionForwardFunc and ContextProjectionBackwardFunc.
- CosSimBackward and CosSimBackwardFunc.
- CrossMapNormalFunc and CrossMapNormalGradFunc.
- MulFunc.
- Add
AutoCompare
andFunctionCompare
, which make it easier to write unittest for comparing gpu and cpu version of a function. - Add
libpaddle_test_main.a
and remove the main function inside the test file.
Bug Fixes
- Add layer check for recurrent_group.
- Clang-format off on some cuda .cc files.
- Fix LogActivation which is not defined.
- Fix bug when run test_layerHelpers multiple times.
- Fix protobuf size limit on seq2seq demo.
- Fix bug for dataprovider converter in GPU mode.
- Fix bug in GatedRecurrentLayer which only occurs in predicting or
job=test
mode. - Fix bug for BatchNorm when testing more than models in test mode.
- Fix unit test of paramRelu.
- Fix some warning about CpuSparseMatrix.
- Fix MultiGradientMachine error if trainer_count > batch_size.
Release v0.9.0
New Features:
- New Layers
- bilinear interpolation layer.
- spatial pyramid-pool layer.
- de-convolution layer.
- maxout layer.
- Support rectangle padding, stride, window and input for Pooling Operation.
- Add —job=time in trainer, which can be used to print time info without compiler option -WITH_TIMER=ON.
- Expose cost_weight/nce_layer in
trainer_config_helpers
- Add FAQ, concepts, h-rnn docs.
- Add Bidi-LSTM and DB-LSTM to quick start demo @alvations
- Add usage track scripts.
Improvements
- Add Travis-CI for Mac OS X. Enable swig unittest in Travis-CI. Skip Travis-CI when only docs are changed.
- Add code coverage tools.
- Refine convolution layer to speedup and reduce GPU memory.
- Speed up PyDataProvider2
- Add ubuntu deb package build scripts.
- Make Paddle use git-flow branching model.
- PServer support no parameter blocks.
Bug Fixes
- add zlib link to py_paddle
- add input sparse data check for sparse layer at runtime
- Bug fix for sparse matrix multiplication
- Fix floating-point overflow problem of tanh
- Fix some nvcc compile options
- Fix a bug in yield dictionary in DataProvider
- Fix SRL hang when exit.
Release v0.8.0beta.1
New features:
-
Mac OSX is supported by source code. #138
- Both GPU and CPU versions of PaddlePaddle are supported.
-
Support CUDA 8.0
-
Enhance
PyDataProvider2
- Add dictionary yield format.
PyDataProvider2
can yield a dictionary with key is data_layer's name, value is features. - Add
min_pool_size
to control memory pool in provider.
- Add dictionary yield format.
-
Add
deb
install package & docker image for no_avx machines.- Especially for cloud computing and virtual machines
-
Automatically disable
avx
instructions in cmake when machine's CPU don't supportavx
instructions. -
Add Parallel NN api in trainer_config_helpers.
-
Add
travis ci
for Github
Bug fixes:
- Several bugs in trainer_config_helpers. Also complete the unittest for trainer_config_helpers
- Check if PaddlePaddle is installed when unittest.
- Fix bugs in GTX series GPU
- Fix bug in MultinomialSampler
Also more documentation was written since last release.
Release v0.8.0beta.0
PaddlePaddle v0.8.0beta.0 release. The install package is not stable yet and it's a pre-release version.