|
|
@ -103,13 +103,12 @@ def create_predictor(args, mode):
|
|
|
|
return predictor, input_tensor, output_tensors
|
|
|
|
return predictor, input_tensor, output_tensors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def draw_text_det_res(dt_boxes, img_path):
|
|
|
|
def draw_text_det_res(dt_boxes, img_path, return_img=True):
|
|
|
|
src_im = cv2.imread(img_path)
|
|
|
|
src_im = cv2.imread(img_path)
|
|
|
|
for box in dt_boxes:
|
|
|
|
for box in dt_boxes:
|
|
|
|
box = np.array(box).astype(np.int32).reshape(-1, 2)
|
|
|
|
box = np.array(box).astype(np.int32).reshape(-1, 2)
|
|
|
|
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
|
|
|
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
|
|
|
img_name_pure = img_path.split("/")[-1]
|
|
|
|
return src_im
|
|
|
|
cv2.imwrite("./output/%s" % img_name_pure, src_im)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def resize_img(img, input_size=600):
|
|
|
|
def resize_img(img, input_size=600):
|
|
|
|