use logger.info replace print

release/2.0-rc1-0
WenmuZhou 4 years ago
parent a804a97c92
commit 34cd39194d

@ -23,7 +23,7 @@ import copy
import numpy as np import numpy as np
import math import math
import time import time
import traceback
import paddle.fluid as fluid import paddle.fluid as fluid
import tools.infer.utility as utility import tools.infer.utility as utility
@ -106,10 +106,10 @@ class TextClassifier(object):
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch) norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch]) self.predictor.run([norm_img_batch])
prob_out = self.output_tensors[0].copy_to_cpu() prob_out = self.output_tensors[0].copy_to_cpu()
cls_res = self.postprocess_op(prob_out) cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime elapse += time.time() - starttime
for rno in range(len(cls_res)): for rno in range(len(cls_result)):
label, score = cls_res[rno] label, score = cls_result[rno]
cls_res[indices[beg_img_no + rno]] = [label, score] cls_res[indices[beg_img_no + rno]] = [label, score]
if '180' in label and score > self.cls_thresh: if '180' in label and score > self.cls_thresh:
img_list[indices[beg_img_no + rno]] = cv2.rotate( img_list[indices[beg_img_no + rno]] = cv2.rotate(
@ -133,8 +133,8 @@ def main(args):
img_list.append(img) img_list.append(img)
try: try:
img_list, cls_res, predict_time = text_classifier(img_list) img_list, cls_res, predict_time = text_classifier(img_list)
except Exception as e: except:
print(e) logger.info(traceback.format_exc())
logger.info( logger.info(
"ERROR!!!! \n" "ERROR!!!! \n"
"Please read the FAQhttps://github.com/PaddlePaddle/PaddleOCR#faq \n" "Please read the FAQhttps://github.com/PaddlePaddle/PaddleOCR#faq \n"
@ -143,10 +143,10 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ") "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit() exit()
for ino in range(len(img_list)): for ino in range(len(img_list)):
print("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[ logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
ino])) ino]))
print("Total predict time for {} images, cost: {:.3f}".format( logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time)) len(img_list), predict_time))
if __name__ == "__main__": if __name__ == "__main__":
main(utility.parse_args()) main(utility.parse_args())

@ -178,11 +178,12 @@ if __name__ == "__main__":
if count > 0: if count > 0:
total_time += elapse total_time += elapse
count += 1 count += 1
print("Predict time of {}: {}".format(image_file, elapse)) logger.info("Predict time of {}: {}".format(image_file, elapse))
src_im = utility.draw_text_det_res(dt_boxes, image_file) src_im = utility.draw_text_det_res(dt_boxes, image_file)
img_name_pure = os.path.split(image_file)[-1] img_name_pure = os.path.split(image_file)[-1]
img_path = os.path.join(draw_img_save, img_path = os.path.join(draw_img_save,
"det_res_{}".format(img_name_pure)) "det_res_{}".format(img_name_pure))
cv2.imwrite(img_path, src_im) cv2.imwrite(img_path, src_im)
logger.info("The visualized image saved in {}".format(img_path))
if count > 1: if count > 1:
print("Avg Time:", total_time / (count - 1)) logger.info("Avg Time:", total_time / (count - 1))

@ -22,7 +22,7 @@ import cv2
import numpy as np import numpy as np
import math import math
import time import time
import traceback
import paddle.fluid as fluid import paddle.fluid as fluid
import tools.infer.utility as utility import tools.infer.utility as utility
@ -135,8 +135,8 @@ def main(args):
img_list.append(img) img_list.append(img)
try: try:
rec_res, predict_time = text_recognizer(img_list) rec_res, predict_time = text_recognizer(img_list)
except Exception as e: except:
print(e) logger.info(traceback.format_exc())
logger.info( logger.info(
"ERROR!!!! \n" "ERROR!!!! \n"
"Please read the FAQhttps://github.com/PaddlePaddle/PaddleOCR#faq \n" "Please read the FAQhttps://github.com/PaddlePaddle/PaddleOCR#faq \n"
@ -145,9 +145,9 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ") "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit() exit()
for ino in range(len(img_list)): for ino in range(len(img_list)):
print("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[ logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[
ino])) ino]))
print("Total predict time for {} images, cost: {:.3f}".format( logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time)) len(img_list), predict_time))

Loading…
Cancel
Save