|
|
@ -140,7 +140,7 @@ class DBPostProcess(object):
|
|
|
|
|
|
|
|
|
|
|
|
boxes_batch = []
|
|
|
|
boxes_batch = []
|
|
|
|
for batch_index in range(pred.shape[0]):
|
|
|
|
for batch_index in range(pred.shape[0]):
|
|
|
|
height, width = shape_list[batch_index]
|
|
|
|
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
|
|
|
|
if self.dilation_kernel is not None:
|
|
|
|
if self.dilation_kernel is not None:
|
|
|
|
mask = cv2.dilate(
|
|
|
|
mask = cv2.dilate(
|
|
|
|
np.array(segmentation[batch_index]).astype(np.uint8),
|
|
|
|
np.array(segmentation[batch_index]).astype(np.uint8),
|
|
|
@ -148,7 +148,7 @@ class DBPostProcess(object):
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
mask = segmentation[batch_index]
|
|
|
|
mask = segmentation[batch_index]
|
|
|
|
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
|
|
|
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
|
|
|
width, height)
|
|
|
|
src_w, src_h)
|
|
|
|
|
|
|
|
|
|
|
|
boxes_batch.append({'points': boxes})
|
|
|
|
boxes_batch.append({'points': boxes})
|
|
|
|
return boxes_batch
|
|
|
|
return boxes_batch
|
|
|
|