|
|
@ -256,15 +256,15 @@ def train_eval_det_run(config, exe, train_info_dict, eval_info_dict):
|
|
|
|
t2 = time.time()
|
|
|
|
t2 = time.time()
|
|
|
|
train_batch_elapse = t2 - t1
|
|
|
|
train_batch_elapse = t2 - t1
|
|
|
|
train_stats.update(stats)
|
|
|
|
train_stats.update(stats)
|
|
|
|
if train_batch_id > start_eval_step and (train_batch_id -start_eval_step) \
|
|
|
|
if train_batch_id > 0 and train_batch_id \
|
|
|
|
% print_batch_step == 0:
|
|
|
|
% print_batch_step == 0:
|
|
|
|
logs = train_stats.log()
|
|
|
|
logs = train_stats.log()
|
|
|
|
strs = 'epoch: {}, iter: {}, {}, time: {:.3f}'.format(
|
|
|
|
strs = 'epoch: {}, iter: {}, {}, time: {:.3f}'.format(
|
|
|
|
epoch, train_batch_id, logs, train_batch_elapse)
|
|
|
|
epoch, train_batch_id, logs, train_batch_elapse)
|
|
|
|
logger.info(strs)
|
|
|
|
logger.info(strs)
|
|
|
|
|
|
|
|
|
|
|
|
if train_batch_id > 0 and\
|
|
|
|
if train_batch_id > start_eval_step and\
|
|
|
|
train_batch_id % eval_batch_step == 0:
|
|
|
|
(train_batch_id - start_eval_step) % eval_batch_step == 0:
|
|
|
|
metrics = eval_det_run(exe, config, eval_info_dict, "eval")
|
|
|
|
metrics = eval_det_run(exe, config, eval_info_dict, "eval")
|
|
|
|
hmean = metrics['hmean']
|
|
|
|
hmean = metrics['hmean']
|
|
|
|
if hmean >= best_eval_hmean:
|
|
|
|
if hmean >= best_eval_hmean:
|
|
|
|