compatible with python3

pull/2/head
kkkim 7 years ago
parent f81bc4ea08
commit 8a7b2a6859

@ -87,59 +87,59 @@ MTCNN主要有三个网络叫做**PNet**, **RNet** 和 **ONet**。因此我
* 生成PNet训练数据和标注文件
```shell
python src/prepare_data/gen_Pnet_train_data.py --dataset_path {your dataset path} --anno_file {your dataset original annotation path}
python dface/prepare_data/gen_Pnet_train_data.py --dataset_path {your dataset path} --anno_file {your dataset original annotation path}
```
* 乱序合并标注文件
```shell
python src/prepare_data/assemble_pnet_imglist.py
python dface/prepare_data/assemble_pnet_imglist.py
```
* 训练PNet模型
```shell
python src/train_net/train_p_net.py
python dface/train_net/train_p_net.py
```
* 生成Net训练数据和标注文件
```shell
python src/prepare_data/gen_Rnet_train_data.py --dataset_path {your dataset path} --anno_file {your dataset original annotation path} --pmodel_file {yout PNet model file trained before}
python dface/prepare_data/gen_Rnet_train_data.py --dataset_path {your dataset path} --anno_file {your dataset original annotation path} --pmodel_file {yout PNet model file trained before}
```
* 乱序合并标注文件
```shell
python src/prepare_data/assemble_rnet_imglist.py
python dface/prepare_data/assemble_rnet_imglist.py
```
* 训练RNet模型
```shell
python src/train_net/train_r_net.py
python dface/train_net/train_r_net.py
```
* 生成ONet训练数据和标注文件
```shell
python src/prepare_data/gen_Onet_train_data.py --dataset_path {your dataset path} --anno_file {your dataset original annotation path} --pmodel_file {yout PNet model file trained before} --rmodel_file {yout RNet model file trained before}
python dface/prepare_data/gen_Onet_train_data.py --dataset_path {your dataset path} --anno_file {your dataset original annotation path} --pmodel_file {yout PNet model file trained before} --rmodel_file {yout RNet model file trained before}
```
* 生成ONet的人脸关键点训练数据和标注文件
```shell
python src/prepare_data/gen_landmark_48.py
python dface/prepare_data/gen_landmark_48.py
```
* 乱序合并标注文件(包括人脸关键点)
```shell
python src/prepare_data/assemble_onet_imglist.py
python dface/prepare_data/assemble_onet_imglist.py
```
* 训练ONet模型
```shell
python src/train_net/train_o_net.py
python dface/train_net/train_o_net.py
```
#### 测试人脸检测

Loading…
Cancel
Save