|
|
@ -125,8 +125,8 @@ public class HelloWorld {
|
|
|
|
// frame.setLengthWidth(640);
|
|
|
|
// frame.setLengthWidth(640);
|
|
|
|
// templeConfig.setFrame(frame);
|
|
|
|
// templeConfig.setFrame(frame);
|
|
|
|
templeConfig.setClassifier(Classifier.DNN);
|
|
|
|
templeConfig.setClassifier(Classifier.DNN);
|
|
|
|
//templeConfig.isShowLog(true);
|
|
|
|
templeConfig.isShowLog(true);
|
|
|
|
templeConfig.init(StudyPattern.Accuracy_Pattern, true, 640, 640, 2);
|
|
|
|
templeConfig.init(StudyPattern.Accuracy_Pattern, true, 640, 640, 4);
|
|
|
|
// ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA2, ModelParameter.class);
|
|
|
|
// ModelParameter modelParameter2 = JSON.parseObject(ModelData.DATA2, ModelParameter.class);
|
|
|
|
// templeConfig.insertModel(modelParameter2);
|
|
|
|
// templeConfig.insertModel(modelParameter2);
|
|
|
|
Operation operation = new Operation(templeConfig);
|
|
|
|
Operation operation = new Operation(templeConfig);
|
|
|
@ -136,18 +136,16 @@ public class HelloWorld {
|
|
|
|
for (int i = 1; i < 1900; i++) {//一阶段
|
|
|
|
for (int i = 1; i < 1900; i++) {//一阶段
|
|
|
|
System.out.println("study1===================" + i);
|
|
|
|
System.out.println("study1===================" + i);
|
|
|
|
//读取本地URL地址图片,并转化成矩阵
|
|
|
|
//读取本地URL地址图片,并转化成矩阵
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/a" + i + ".jpg");
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
//Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
|
|
|
|
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/c" + i + ".jpg");
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
//Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
|
|
|
|
Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg");
|
|
|
|
//Matrix f = picture.getImageMatrixByLocal("D:\\share\\picture/f" + i + ".png");
|
|
|
|
|
|
|
|
//将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习
|
|
|
|
//将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习
|
|
|
|
//第二次学习的时候,第三个参数必须是 true
|
|
|
|
//第二次学习的时候,第三个参数必须是 true
|
|
|
|
// operation.learning(f, 0, false);
|
|
|
|
|
|
|
|
operation.learning(a, 1, false);
|
|
|
|
operation.learning(a, 1, false);
|
|
|
|
// operation.learning(b, 2, false);
|
|
|
|
operation.learning(b, 2, false);
|
|
|
|
operation.learning(c, 2, false);
|
|
|
|
operation.learning(c, 3, false);
|
|
|
|
//operation.learning(d, 4, false);
|
|
|
|
operation.learning(d, 4, false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -155,14 +153,13 @@ public class HelloWorld {
|
|
|
|
for (int i = 1; i < 1900; i++) {
|
|
|
|
for (int i = 1; i < 1900; i++) {
|
|
|
|
System.out.println("avg==" + i);
|
|
|
|
System.out.println("avg==" + i);
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
//Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
|
|
|
|
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
//Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
|
|
|
|
Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg");
|
|
|
|
|
|
|
|
|
|
|
|
operation.normalization(a, templeConfig.getConvolutionNerveManager());
|
|
|
|
operation.normalization(a, templeConfig.getConvolutionNerveManager());
|
|
|
|
//operation.normalization(b, templeConfig.getConvolutionNerveManager());
|
|
|
|
operation.normalization(b, templeConfig.getConvolutionNerveManager());
|
|
|
|
operation.normalization(c, templeConfig.getConvolutionNerveManager());
|
|
|
|
operation.normalization(c, templeConfig.getConvolutionNerveManager());
|
|
|
|
//operation.normalization(d, templeConfig.getConvolutionNerveManager());
|
|
|
|
operation.normalization(d, templeConfig.getConvolutionNerveManager());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
templeConfig.getNormalization().avg();
|
|
|
|
templeConfig.getNormalization().avg();
|
|
|
|
for (int j = 0; j < 1; j++) {
|
|
|
|
for (int j = 0; j < 1; j++) {
|
|
|
@ -170,19 +167,15 @@ public class HelloWorld {
|
|
|
|
System.out.println("study2==================" + i);
|
|
|
|
System.out.println("study2==================" + i);
|
|
|
|
//读取本地URL地址图片,并转化成矩阵
|
|
|
|
//读取本地URL地址图片,并转化成矩阵
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
//Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
|
|
|
|
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
//Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
|
|
|
|
Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg");
|
|
|
|
//Matrix f = picture.getImageMatrixByLocal("D:\\share\\picture/f" + i + ".png");
|
|
|
|
|
|
|
|
//将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习
|
|
|
|
//将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习
|
|
|
|
//第二次学习的时候,第三个参数必须是 true
|
|
|
|
//第二次学习的时候,第三个参数必须是 true
|
|
|
|
// operation.learning(f, 0, true);
|
|
|
|
|
|
|
|
//System.out.println("1===============");
|
|
|
|
|
|
|
|
operation.learning(a, 1, true);
|
|
|
|
operation.learning(a, 1, true);
|
|
|
|
//System.out.println("2===============");
|
|
|
|
operation.learning(b, 2, true);
|
|
|
|
//operation.learning(b, 2, true);
|
|
|
|
operation.learning(c, 3, true);
|
|
|
|
operation.learning(c, 2, true);
|
|
|
|
operation.learning(d, 4, true);
|
|
|
|
//operation.learning(d, 4, true);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -198,22 +191,29 @@ public class HelloWorld {
|
|
|
|
// Operation operation2 = new Operation(templeConfig2);
|
|
|
|
// Operation operation2 = new Operation(templeConfig2);
|
|
|
|
int wrong = 0;
|
|
|
|
int wrong = 0;
|
|
|
|
int allNub = 0;
|
|
|
|
int allNub = 0;
|
|
|
|
for (int i = 1900; i <= 2000; i++) {
|
|
|
|
for (int i = 1900; i <= 1998; i++) {
|
|
|
|
//读取本地URL地址图片,并转化成矩阵
|
|
|
|
//读取本地URL地址图片,并转化成矩阵
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
Matrix a = picture.getImageMatrixByLocal("D:\\share\\picture/a" + i + ".jpg");
|
|
|
|
//Matrix b = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/b" + i + ".jpg");
|
|
|
|
Matrix b = picture.getImageMatrixByLocal("D:\\share\\picture/b" + i + ".jpg");
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
Matrix c = picture.getImageMatrixByLocal("D:\\share\\picture/c" + i + ".jpg");
|
|
|
|
//Matrix d = picture.getImageMatrixByLocal("/Users/lidapeng/Desktop/myDocment/picture/d" + i + ".jpg");
|
|
|
|
Matrix d = picture.getImageMatrixByLocal("D:\\share\\picture/d" + i + ".jpg");
|
|
|
|
//将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习
|
|
|
|
//将图像矩阵和标注加入进行学习,Accuracy_Pattern 模式 进行第二次学习
|
|
|
|
//第二次学习的时候,第三个参数必须是 true
|
|
|
|
//第二次学习的时候,第三个参数必须是 true
|
|
|
|
allNub += 2;
|
|
|
|
allNub += 4;
|
|
|
|
int an = operation.toSee(a);
|
|
|
|
int an = operation.toSee(a);
|
|
|
|
|
|
|
|
int bn = operation.toSee(b);
|
|
|
|
int cn = operation.toSee(c);
|
|
|
|
int cn = operation.toSee(c);
|
|
|
|
|
|
|
|
int dn = operation.toSee(d);
|
|
|
|
if (an != 1) {
|
|
|
|
if (an != 1) {
|
|
|
|
wrong++;
|
|
|
|
wrong++;
|
|
|
|
} else {
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (cn != 2) {
|
|
|
|
if (bn != 2) {
|
|
|
|
|
|
|
|
wrong++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cn != 3) {
|
|
|
|
|
|
|
|
wrong++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dn != 4) {
|
|
|
|
wrong++;
|
|
|
|
wrong++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|