累计BP与标准BP

pull/1/head
lidapeng 5 years ago
parent 7c4fb8f2d7
commit 99a53feed1

@ -19,7 +19,7 @@ public class App {
//构建一个神经网络管理器,参数:(感知神经元个数,隐层神经元个数,输出神经元个数,输出神经元深度)
//一个神经网络管理管理一个神经网络学习内容,
NerveManager nerveManager =
new NerveManager(2, 4, 1, 4);
new NerveManager(2, 2, 1, 2);
//开始构建神经网络,参数为是否初始化权重及阈值,若
nerveManager.setStudyPoint(0.1);//设置学习率(取值范围是0-1开区间)若不设置默认为0.1
nerveManager.init(true);
@ -33,10 +33,10 @@ public class App {
List<List<Double>> testList = new ArrayList<>();
for (int i = 0; i < 1000; i++) {
List<Double> dm = new ArrayList<>();
dm.add(1.0);
dm.add(0.8);
dm.add(0.03);
dm.add(0.06);
dm.add(ArithUtil.add(1.0, random.nextDouble()));
dm.add(ArithUtil.add(0.8, random.nextDouble()));
dm.add(ArithUtil.add(-1.0, -random.nextDouble()));
dm.add(ArithUtil.add(-0.8, -random.nextDouble()));
testList.add(dm);
}
for (int i = 0; i < 1000; i++) {
@ -52,9 +52,9 @@ public class App {
double hiddenTh = hiddenNerve.getThreshold();//隐层阈值
double outTh = outNerver.getThreshold();//输出阈值
System.out.println("hiddenTh==" + hiddenTh + ",outTh==" + outTh);
sensoryNerves.get(0).postMessage(1, 1.0, false, E1);
sensoryNerves.get(1).postMessage(1, 0.8, false, E1);
sensoryNerves.get(0).postMessage(1, 0.03, false, E2);
sensoryNerves.get(1).postMessage(1, 0.06, false, E2);
sensoryNerves.get(0).postMessage(1, 1.5, false, E1);
sensoryNerves.get(1).postMessage(1, 1.2, false, E1);
sensoryNerves.get(0).postMessage(1, -1.5, false, E2);
sensoryNerves.get(1).postMessage(1, -1.2, false, E2);
}
}

@ -55,8 +55,8 @@ public class OutNerve extends Nerve {
//上层神经元输入值 * 当前神经元梯度*学习率 =该上层输入的神经元权重变化
//当前梯度神经元梯度变化 *学习旅 * -1 = 当前神经元阈值变化
//ArithUtil.sub(E, outNub) 求这个的累计平均值
allE = ArithUtil.add(Math.abs(ArithUtil.sub(E, outNub)), allE);
double avg = ArithUtil.div(allE, trainNub);
return ArithUtil.mul(activeFunction.sigmoidG(outNub), avg);
//allE = ArithUtil.add(Math.abs(ArithUtil.sub(E, outNub)), allE);
// double avg = ArithUtil.div(allE, trainNub);
return ArithUtil.mul(activeFunction.sigmoidG(outNub), ArithUtil.sub(E, outNub));
}
}

Loading…
Cancel
Save