|
|
|
@ -202,7 +202,7 @@
|
|
|
|
|
学习1200万像素的照片物体,1000张需耗时5-7个小时。
|
|
|
|
|
#### 本包为性能优化而对AI算法的修改
|
|
|
|
|
* 本包对图像AI算法进行了修改,为应对CPU部署。
|
|
|
|
|
* 卷积神经网络后的全连接层直接替换成了LVQ算法进行特征向量量化学习聚类,通过卷积结果与K均值矩阵欧式距离来进行判定。
|
|
|
|
|
* 卷积神经网络后的全连接层直接替换成了LVQ算法进行特征向量量化学习聚类,通过卷积结果与LVQ原型向量欧式距离来进行判定。
|
|
|
|
|
* 物体的边框检测通过卷积后的特征向量进行多元线性回归获得,检测边框的候选区并没有使用图像分割(cpu对图像分割算法真是超慢),
|
|
|
|
|
而是通过Frame类让用户自定义先验图框大小和先验图框每次移动的检测步长,然后再通过多次检测的IOU来确定是否为同一物体。
|
|
|
|
|
* 所以添加定位模式,用户要确定Frame的大小和步长,来替代基于图像分割的候选区推荐算法。
|
|
|
|
|