|
|
|
/**
|
|
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \file rnn.h
|
|
|
|
* \brief
|
|
|
|
*/
|
|
|
|
#ifndef OPS_BUILT_IN_OP_PROTO_INC_RNN_H_
|
|
|
|
#define OPS_BUILT_IN_OP_PROTO_INC_RNN_H_
|
|
|
|
|
|
|
|
#include "graph/operator_reg.h"
|
|
|
|
|
|
|
|
namespace ge {
|
|
|
|
/**
|
|
|
|
*@brief: Basic LSTM Cell forward calculation.
|
|
|
|
*@par Inputs:
|
|
|
|
*five inputs:
|
|
|
|
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li h:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li w:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li b:A 1D Tensor. Must be one of the following types: float16. The format must be ND . \n
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li keep_prob:An integer identifying the keep prob in the op. Default to 1.
|
|
|
|
*@li forget_bias:An integer identifying the forget bias in the op. Default to 1.
|
|
|
|
*@li state_is_tuple:An bool identifying if the hidden state and cell state is tuple. Default to true.
|
|
|
|
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*seven outputs:
|
|
|
|
*@li mask:A 1D Tensor. Must be one of the following types: uint8.
|
|
|
|
*@li ct:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
*@li ht:A 4D Tensor. Must be one of the following types: float16.
|
|
|
|
*@li it:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
*@li jt:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
*@li ft:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
*@li ot:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
*/
|
|
|
|
REG_OP(BasicLSTMCell)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(h, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(w, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
|
|
|
|
.OUTPUT(ct, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(ht, TensorType({DT_FLOAT16}))
|
|
|
|
.OUTPUT(it, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(jt, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(ft, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(ot, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.ATTR(keep_prob, Float, 1.0)
|
|
|
|
.ATTR(forget_bias, Float, 1.0)
|
|
|
|
.ATTR(state_is_tuple, Bool, true)
|
|
|
|
.ATTR(activation, String, "tanh")
|
|
|
|
.OP_END_FACTORY_REG(BasicLSTMCell)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: Dynamic LSTM forward calculation . \n
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
*@li x:A 4D Tensor. Must be the type float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li w:A 4D Tensor. Must be the type float32. The format must be FRACTAL_Z.
|
|
|
|
*@li b:A 1D Tensor. Must be the type float32. The format must be ND . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*output_h:A Tensor of output. Must be the type float32. The format must be FRACTAL_Z.
|
|
|
|
|
|
|
|
*@par Restrictions:
|
|
|
|
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
|
|
|
|
*/
|
|
|
|
REG_OP(DynamicLSTM)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT32}))
|
|
|
|
.INPUT(w, TensorType({DT_FLOAT32}))
|
|
|
|
.INPUT(b, TensorType({DT_FLOAT32}))
|
|
|
|
.OUTPUT(output_h, TensorType({DT_FLOAT32}))
|
|
|
|
.OP_END_FACTORY_REG(DynamicLSTM)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: DynamicRNNGrad calculation.
|
|
|
|
*@par Inputs:
|
|
|
|
*ten inputs: \n
|
|
|
|
*@li x:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li w:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li b:A 1D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li y:A 1D Tensor. Must be one of the following types: int32. The format must be FRACTAL_NZ.
|
|
|
|
*@li init_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li init_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dh:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dc:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li seq_length:A 1D Tensor. Must be one of the following types: int32.
|
|
|
|
*@li mask:A 1D Tensor. Must be one of the following types: int8.
|
|
|
|
*@li wci:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li wcf:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li wco:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported.
|
|
|
|
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
|
|
|
|
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
|
|
|
|
*@li use_peephole:An bool identifying if use peephole in the op. Default to false.
|
|
|
|
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
|
|
|
|
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
|
|
|
|
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
|
|
|
|
*@li time_major:An bool identifying the time major in the op. Default to false.
|
|
|
|
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
|
|
|
|
*@li forget_bias:An float identifying the forget bias in the op. Default to 0.
|
|
|
|
*@li is_training:An bool identifying is training in the op. Default to true.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*eight outputs: \n
|
|
|
|
*@li dw:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li db:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dx:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dc_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dwci:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dwcf:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dwco:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*/
|
|
|
|
REG_OP(DynamicRNNGrad)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(dc, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(i, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(j, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(f, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(o, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
|
|
|
|
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
|
|
|
|
.OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dw, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(db, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dx, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dh_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dc_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.DYNAMIC_OUTPUT(dwci, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.DYNAMIC_OUTPUT(dwcf, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.DYNAMIC_OUTPUT(dwco, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.ATTR(cell_type, String, "LSTM")
|
|
|
|
.ATTR(direction, String, "UNIDIRECTIONAL")
|
|
|
|
.ATTR(cell_depth, Int, 0)
|
|
|
|
.ATTR(use_peephole, Bool, false)
|
|
|
|
.ATTR(keep_prob, Float, -1.0)
|
|
|
|
.ATTR(cell_clip, Float, -1.0)
|
|
|
|
.ATTR(num_proj, Int, 0)
|
|
|
|
.ATTR(time_major, Bool, true)
|
|
|
|
.ATTR(forget_bias, Float, 0.0)
|
|
|
|
.OP_END_FACTORY_REG(DynamicRNNGrad)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: DynamicRNN calculation.
|
|
|
|
*@par Inputs:
|
|
|
|
*ten inputs:
|
|
|
|
*@li x:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li w:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
|
|
|
|
*@li b:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND.
|
|
|
|
*@li seq_length:A 1D Tensor. Must be one of the following types: int32. The format must be ND.
|
|
|
|
*@li init_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li init_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li wci:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
|
|
|
|
*@li wcf:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
|
|
|
|
*@li wco:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_ZN_LSTM.
|
|
|
|
*@li mask:A 1D Tensor. Must be one of the following types: uint8. The format must be ND . \n
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li cell_type:An string identifying the cell type in the op. Default to "LSTM". Only LSTM is currently supported.
|
|
|
|
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
|
|
|
|
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
|
|
|
|
*@li use_peephole:An bool identifying if use peephole in the op. Default to false.
|
|
|
|
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
|
|
|
|
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
|
|
|
|
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
|
|
|
|
*@li time_major:An bool identifying the time major in the op. Default to true.
|
|
|
|
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
|
|
|
|
*@li forget_bias:An float identifying the forget bias in the op. Default to 0.
|
|
|
|
*@li is_training:An bool identifying is training in the op. Default to true . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*eight outputs:
|
|
|
|
*@li y:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li output_h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li output_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*/
|
|
|
|
REG_OP(DynamicRNN)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
|
|
|
|
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(wci, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(wcf, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(wco, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(mask, TensorType({DT_UINT8}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(output_c, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(i, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(j, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(f, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(o, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(tanhc, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.ATTR(cell_type, String, "LSTM")
|
|
|
|
.ATTR(direction, String, "UNIDIRECTIONAL")
|
|
|
|
.ATTR(cell_depth, Int, 1)
|
|
|
|
.ATTR(use_peephole, Bool, false)
|
|
|
|
.ATTR(keep_prob, Float, 1.0)
|
|
|
|
.ATTR(cell_clip, Float, -1.0)
|
|
|
|
.ATTR(num_proj, Int, 0)
|
|
|
|
.ATTR(time_major, Bool, true)
|
|
|
|
.ATTR(activation, String, "tanh")
|
|
|
|
.ATTR(forget_bias, Float, 0.0)
|
|
|
|
.ATTR(is_training, Bool, true)
|
|
|
|
.OP_END_FACTORY_REG(DynamicRNN)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: LSTMInputGrad calculation.
|
|
|
|
*@par Inputs:
|
|
|
|
*ten inputs: \n
|
|
|
|
*@li w:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li init_c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li h:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dy:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dh:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dc:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li i:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li j:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li f:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*eight outputs: \n
|
|
|
|
*@li dx:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dh_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dc_prev:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*/
|
|
|
|
REG_OP(LSTMInputGrad)
|
|
|
|
.INPUT(w, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(init_c, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(dy, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(dh, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(dc, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(i, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(j, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(f, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(o, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dx, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dh_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dc_prev, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dgate, TensorType({DT_FLOAT16}))
|
|
|
|
.OP_END_FACTORY_REG(LSTMInputGrad)
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of input and hidden state.
|
|
|
|
*@par Inputs:
|
|
|
|
*three inputs:
|
|
|
|
*@li dgate:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li w:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li dropout_mask:A 1D Tensor. Must be one of the following types: uint8. The format must be ND . \n
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*keep_prob:An integer identifying the keep prob in the op. Default to 1 . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*two outputs:
|
|
|
|
*@li dxt:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
*@li dht:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
|
|
|
|
*@par Restrictions:
|
|
|
|
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
|
|
|
|
*/
|
|
|
|
REG_OP(BasicLSTMCellInputGrad)
|
|
|
|
.INPUT(dgate, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(w, TensorType({DT_FLOAT16}))
|
|
|
|
.OPTIONAL_INPUT(dropout_mask, TensorType({DT_UINT8}))
|
|
|
|
.OUTPUT(dxt, TensorType({DT_FLOAT16, DT_FLOAT32}))
|
|
|
|
.OUTPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT32}))
|
|
|
|
.ATTR(keep_prob, Float, 1.0)
|
|
|
|
.OP_END_FACTORY_REG(BasicLSTMCellInputGrad)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of weight and bias.
|
|
|
|
*@par Inputs:
|
|
|
|
*three inputs:
|
|
|
|
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li h:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li dgate:A 4D Tensor. Must be one of the following types: uint8. The format must be FRACTAL_NZ . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*two outputs:
|
|
|
|
*@li dw:A 4D Tensor. Must be one of the following types: float16.
|
|
|
|
*@li db:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
|
|
|
|
*@par Restrictions:
|
|
|
|
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
|
|
|
|
*/
|
|
|
|
REG_OP(BasicLSTMCellWeightGrad)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(h, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(dgate, TensorType({DT_FLOAT16}))
|
|
|
|
.OUTPUT(dw, TensorType({DT_FLOAT16}))
|
|
|
|
.OUTPUT(db, TensorType({DT_FLOAT16, DT_FLOAT32}))
|
|
|
|
.OP_END_FACTORY_REG(BasicLSTMCellWeightGrad)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: Basic LSTM Cell backward calculation.Calculate the gradient of gates and cell state.
|
|
|
|
*@par Inputs:
|
|
|
|
*eight inputs:
|
|
|
|
*@li c:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dht:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li dct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li it:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li jt:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li ft:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li ot:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li tanhct:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ . \n
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li forget_bias:An integer identifying the forget bias in the op. Default to 1.
|
|
|
|
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*two outputs:
|
|
|
|
*@li dgate:A 4D Tensor. Must be one of the following types: float16.
|
|
|
|
*@li dct_1:A 4D Tensor. Must be one of the following types: float16, float32.
|
|
|
|
|
|
|
|
*@par Restrictions:
|
|
|
|
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
|
|
|
|
*/
|
|
|
|
REG_OP(BasicLSTMCellCStateGrad)
|
|
|
|
.INPUT(c, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(dht, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(dct, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(it, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(jt, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(ft, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(ot, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(tanhct, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(dgate, TensorType({DT_FLOAT16}))
|
|
|
|
.OUTPUT(dct_1, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.ATTR(forget_bias, Float, 1.0)
|
|
|
|
.ATTR(activation, String, "tanh")
|
|
|
|
.OP_END_FACTORY_REG(BasicLSTMCellCStateGrad)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: RNN operator.
|
|
|
|
*@par Inputs:
|
|
|
|
*eight inputs:
|
|
|
|
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li cont:A 1D Tensor. Must be one of the following types: float16. The format must be ND.
|
|
|
|
*@li x_static:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li h_0:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li w_xh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li w_sh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li w_hh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li w_ho:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li bias_h:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND.
|
|
|
|
*@li bias_o:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND . \n
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li expose_hidden:An bool identifying if expose the hidden state of last time step. Default to false.
|
|
|
|
*@li num_output:An integer identifying the number of output features. Default to 0 . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*two outputs:
|
|
|
|
*@li o:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li h_t:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@par Restrictions:
|
|
|
|
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
|
|
|
|
*/
|
|
|
|
REG_OP(RNN)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(cont, TensorType({DT_FLOAT16}))
|
|
|
|
.OPTIONAL_INPUT(x_static, TensorType({DT_FLOAT16}))
|
|
|
|
.OPTIONAL_INPUT(h_0, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(w_xh, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(bias_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(w_sh, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(w_hh, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(w_ho, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(bias_o, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(o, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(h_t, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.ATTR(num_output, Int, 0)
|
|
|
|
.ATTR(expose_hidden, Bool, false)
|
|
|
|
.OP_END_FACTORY_REG(RNN)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: BasicRNNCell operator.
|
|
|
|
*@par Inputs:
|
|
|
|
*eight inputs:
|
|
|
|
*@li x:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li cont:A 1D Tensor. Must be one of the following types: float16. The format must be ND.
|
|
|
|
*@li w_xh_x_static:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li h_0:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li w_xh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li w_hh:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li w_ho:A 4D Tensor. Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li bias_h:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND.
|
|
|
|
*@li bias_o:A 1D Tensor. Must be one of the following types: float16, float32. The format must be ND . \n
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li expose_hidden:An bool identifying if expose the hidden state of last time step. Default to false.
|
|
|
|
*@li num_output:An integer identifying the number of output features. Default to 0 . \n
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*two outputs:
|
|
|
|
*@li o_t:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li h_t:A 4D Tensor. Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
|
|
|
|
*@par Restrictions:
|
|
|
|
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
|
|
|
|
*/
|
|
|
|
REG_OP(BasicRNNCell)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16}))
|
|
|
|
.OPTIONAL_INPUT(cont, TensorType({DT_FLOAT16}))
|
|
|
|
.OPTIONAL_INPUT(w_xh_x_static, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(h_0, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(w_xh, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(bias_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(w_hh, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(w_ho, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(bias_o, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(o_t, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(h_t, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.ATTR(expose_hidden, Bool, false)
|
|
|
|
.ATTR(num_output, Int, 0)
|
|
|
|
.OP_END_FACTORY_REG(BasicRNNCell)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: DynamicGRU calculation.
|
|
|
|
*@par Inputs:
|
|
|
|
*seven inputs: \n
|
|
|
|
*@li x:Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li w:Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li b:Must be one of the following types: float16, float32. The format must be ND.
|
|
|
|
*@li cw:Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li cb:Must be one of the following types: float16, float32. The format must be ND.
|
|
|
|
*@li seq_length:Must be one of the following types: int32. The format must be ND.
|
|
|
|
*@li init_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
|
|
|
|
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
|
|
|
|
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
|
|
|
|
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
|
|
|
|
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
|
|
|
|
*@li time_major:An bool identifying the time major in the op. Default to true.
|
|
|
|
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
|
|
|
|
*@li is_training:An bool identifying is training in the op. Default to true.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*five outputs: \n
|
|
|
|
*@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li r:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li i:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li n:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
|
|
|
|
*@par Restrictions:
|
|
|
|
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
|
|
|
|
*/
|
|
|
|
REG_OP(DynamicGRU)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(w, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(b, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.INPUT(cw, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(cb, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
|
|
|
|
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(r, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(i, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(n, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.ATTR(direction, String, "UNIDIRECTIONAL")
|
|
|
|
.ATTR(cell_depth, Int, 1)
|
|
|
|
.ATTR(keep_prob, Float, 1.0)
|
|
|
|
.ATTR(cell_clip, Float, -1.0)
|
|
|
|
.ATTR(num_proj, Int, 0)
|
|
|
|
.ATTR(time_major, Bool, true)
|
|
|
|
.ATTR(activation, String, "tanh")
|
|
|
|
.ATTR(is_training, Bool, true)
|
|
|
|
.OP_END_FACTORY_REG(DynamicGRU)
|
|
|
|
|
|
|
|
/**
|
|
|
|
*@brief: DynamicGRUV2 calculation.
|
|
|
|
*@par Inputs:
|
|
|
|
*seven inputs: \n
|
|
|
|
*@li x:Must be one of the following types: float16. The format must be FRACTAL_NZ.
|
|
|
|
*@li weight_input:Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li weight_hidden:Must be one of the following types: float16. The format must be FRACTAL_Z.
|
|
|
|
*@li bias_input:Must be one of the following types: float16, float32. The format must be ND.
|
|
|
|
*@li bias_hidden:Must be one of the following types: float16, float32. The format must be ND.
|
|
|
|
*@li seq_length:Must be one of the following types: int32. The format must be ND.
|
|
|
|
*@li init_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
*@li direction:An string identifying the direction in the op. Default to "UNIDIRECTIONAL". Only UNIDIRECTIONAL is currently supported.
|
|
|
|
*@li cell_depth:An integer identifying the cell depth in the op. Default to 1.
|
|
|
|
*@li keep_prob:An float identifying the keep prob in the op. Default to 1.
|
|
|
|
*@li cell_clip:An float identifying the cell clip in the op. Default to -1.
|
|
|
|
*@li num_proj:An integer identifying the num projection in the op. Default to 0.
|
|
|
|
*@li time_major:An bool identifying the time major in the op. Default to true.
|
|
|
|
*@li activation:An string identifying the type of activation function in the op. Default to "tanh". Only tanh is currently supported.
|
|
|
|
*@li gate_order:An string identifying the gate order in weight and bias. Default to "zrh". "rzh" is another option.
|
|
|
|
*@li reset_after:An bool identifying whether to apply reset gate after matrix multiplication. Default to true.
|
|
|
|
*@li is_training:An bool identifying is training in the op. Default to true.
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
*six outputs: \n
|
|
|
|
*@li y:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li output_h:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li update:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li reset:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
*@li hidden_new:Must be one of the following types: float16, float32. The format must be FRACTAL_NZ.
|
|
|
|
|
|
|
|
*@par Restrictions:
|
|
|
|
*Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
|
|
|
|
*/
|
|
|
|
REG_OP(DynamicGRUV2)
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(weight_input, TensorType({DT_FLOAT16}))
|
|
|
|
.INPUT(weight_hidden, TensorType({DT_FLOAT16}))
|
|
|
|
.OPTIONAL_INPUT(bias_input, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(bias_hidden, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OPTIONAL_INPUT(seq_length, TensorType({DT_INT32}))
|
|
|
|
.OPTIONAL_INPUT(init_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(output_h, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(update, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(reset, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(new, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.OUTPUT(hidden_new, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
.ATTR(direction, String, "UNIDIRECTIONAL")
|
|
|
|
.ATTR(cell_depth, Int, 1)
|
|
|
|
.ATTR(keep_prob, Float, 1.0)
|
|
|
|
.ATTR(cell_clip, Float, -1.0)
|
|
|
|
.ATTR(num_proj, Int, 0)
|
|
|
|
.ATTR(time_major, Bool, true)
|
|
|
|
.ATTR(activation, String, "tanh")
|
|
|
|
.ATTR(gate_order, String, "zrh")
|
|
|
|
.ATTR(reset_after, Bool, true)
|
|
|
|
.ATTR(is_training, Bool, true)
|
|
|
|
.OP_END_FACTORY_REG(DynamicGRUV2)
|
|
|
|
} // namespace ge
|
|
|
|
|
|
|
|
#endif // OPS_BUILT_IN_OP_PROTO_INC_RNN_H_
|