|
|
|
/**
|
|
|
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "host_kernels/concat_v2_kernel.h"
|
|
|
|
|
|
|
|
#include <memory>
|
|
|
|
#include <set>
|
|
|
|
|
|
|
|
#include "common/debug/log.h"
|
|
|
|
#include "common/fp16_t.h"
|
|
|
|
#include "common/op/ge_op_utils.h"
|
|
|
|
#include "framework/common/debug/ge_log.h"
|
|
|
|
#include "host_kernels/kernel_utils.h"
|
|
|
|
#include "graph/utils/type_utils.h"
|
|
|
|
#include "inc/kernel_factory.h"
|
|
|
|
#include "framework/common/types.h"
|
|
|
|
|
|
|
|
namespace ge {
|
|
|
|
namespace {
|
|
|
|
const size_t kConcatV2InputNum = 3;
|
|
|
|
const int kSupportEmptyTensorRank = 1;
|
|
|
|
const std::set<DataType> concatv2_supported_type = {DT_INT32, DT_FLOAT};
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void GetOutputData(std::vector<T> &y_data, int64_t loop, size_t &input_size,
|
|
|
|
const std::vector<ConstGeTensorPtr> &input) {
|
|
|
|
for (int64_t i = 0; i < loop; i++) {
|
|
|
|
for (size_t k = 0; k < input_size; k++) {
|
|
|
|
GeShape datak_shape = input.at(k)->GetTensorDesc().GetShape();
|
|
|
|
auto buffer = input.at(k)->GetData();
|
|
|
|
const T *datak = reinterpret_cast<const T *>(buffer.data());
|
|
|
|
if (datak == nullptr || buffer.size() == 0) {
|
|
|
|
GELOGW("input[%zu] is with no data", k);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
int64_t gapk = datak_shape.GetShapeSize() / loop; // [2,3] is 6/loop
|
|
|
|
for (int64_t j = 0; j < gapk; j++) {
|
|
|
|
y_data.push_back(datak[j + gapk * i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define SET_OUTPUT(DTYPE, TYPE) \
|
|
|
|
case DTYPE: \
|
|
|
|
GetOutputData(y_data_##TYPE, loop, input_size, input); \
|
|
|
|
(void)output_ptr->SetData(reinterpret_cast<uint8_t *>(y_data_##TYPE.data()), y_data_##TYPE.size() * length); \
|
|
|
|
break;
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
Status ConcatV2Kernel::Compute(const ge::OpDescPtr op_desc_ptr, const vector<ge::ConstGeTensorPtr> &input,
|
|
|
|
vector<ge::GeTensorPtr> &v_output) {
|
|
|
|
GELOGI("ConcatV2Kernel in.");
|
|
|
|
if (op_desc_ptr == nullptr) {
|
|
|
|
GELOGE(PARAM_INVALID, "input opdesc is nullptr.");
|
|
|
|
return PARAM_INVALID;
|
|
|
|
}
|
|
|
|
int tidx = -1;
|
|
|
|
ConstGeTensorPtr tensor = nullptr;
|
|
|
|
Status ret = ConcatV2PreCompute(input, tidx, tensor);
|
|
|
|
if (ret != SUCCESS) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t input_size = input.size(); // N + 1
|
|
|
|
input_size--; // N
|
|
|
|
|
|
|
|
GE_CHECK_NOTNULL(tensor);
|
|
|
|
DataType data_type = tensor->GetTensorDesc().GetDataType();
|
|
|
|
uint32_t length = 0;
|
|
|
|
if (!TypeUtils::GetDataTypeLength(data_type, length)) {
|
|
|
|
GELOGW("Can't GetDataTypeLength of data_type: %s", TypeUtils::DataTypeToSerialString(data_type).c_str());
|
|
|
|
return NOT_CHANGED;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<int32_t> y_data_int32_t;
|
|
|
|
std::vector<float> y_data_float;
|
|
|
|
|
|
|
|
// Index 0 can always gets a GeTensorDesc object from any OpDescPtr.
|
|
|
|
auto output_tensor_desc = op_desc_ptr->GetOutputDesc(0);
|
|
|
|
GeTensorPtr output_ptr = MakeShared<GeTensor>(output_tensor_desc);
|
|
|
|
if (output_ptr == nullptr) {
|
|
|
|
GELOGE(MEMALLOC_FAILED, "MakeShared failed.");
|
|
|
|
return MEMALLOC_FAILED;
|
|
|
|
}
|
|
|
|
|
|
|
|
GeShape data0_shape = tensor->GetTensorDesc().GetShape();
|
|
|
|
int64_t loop = 1;
|
|
|
|
for (int i = 0; i < tidx; i++) {
|
|
|
|
loop *= data0_shape.GetDim(i);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (data_type) {
|
|
|
|
SET_OUTPUT(DT_INT32, int32_t)
|
|
|
|
SET_OUTPUT(DT_FLOAT, float)
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
output_ptr->MutableTensorDesc().SetDataType(data_type);
|
|
|
|
output_ptr->MutableTensorDesc().SetShape(GeShape({op_desc_ptr->GetOutputDesc(0).GetShape()}));
|
|
|
|
v_output.push_back(output_ptr);
|
|
|
|
GELOGI("ConcatV2Kernel success.");
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status ConcatV2Kernel::ConcatV2PreCompute(const std::vector<ConstGeTensorPtr> &input,
|
|
|
|
int &tidx,
|
|
|
|
ConstGeTensorPtr &tensor) {
|
|
|
|
size_t input_size = input.size();
|
|
|
|
// N + 1 is greater than or equal to 3
|
|
|
|
if (input_size < kConcatV2InputNum) {
|
|
|
|
GELOGI("The number of input for ConcatV2 must not be less than %zu.", kConcatV2InputNum);
|
|
|
|
return NOT_CHANGED;
|
|
|
|
}
|
|
|
|
bool has_empty_tensor = false;
|
|
|
|
input_size--;
|
|
|
|
for (size_t i = 0; i < input_size; i++) {
|
|
|
|
if (input[i] == nullptr) {
|
|
|
|
GELOGI("Input%zu must not be null.", i);
|
|
|
|
return NOT_CHANGED;
|
|
|
|
}
|
|
|
|
if (input.at(i)->GetData().size() == 0) {
|
|
|
|
GELOGW("input[%zu] is with no data.", i);
|
|
|
|
has_empty_tensor = true;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (tensor == nullptr) {
|
|
|
|
tensor = input.at(i); // get first valid tensor with data
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
GE_CHECK_NOTNULL(tensor);
|
|
|
|
DataType data_type = tensor->GetTensorDesc().GetDataType();
|
|
|
|
for (size_t i = 1; i < input_size; i++) {
|
|
|
|
if (data_type != input.at(i)->GetTensorDesc().GetDataType()) {
|
|
|
|
GELOGI("Data type of N inputs for ConcatV2 not the same, check input %zu failed.", i);
|
|
|
|
return NOT_CHANGED;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// check if input data type is supported
|
|
|
|
if (concatv2_supported_type.find(data_type) == concatv2_supported_type.end()) {
|
|
|
|
GELOGI("ConcatV2 does not support this Data type: %s.", TypeUtils::DataTypeToSerialString(data_type).c_str());
|
|
|
|
return NOT_CHANGED;
|
|
|
|
}
|
|
|
|
|
|
|
|
ConstGeTensorPtr tensor_axis = input.at(input_size);
|
|
|
|
GE_CHECK_NOTNULL(tensor_axis);
|
|
|
|
const int *axis = reinterpret_cast<const int *>(tensor_axis->GetData().data());
|
|
|
|
GE_CHECK_NOTNULL(axis);
|
|
|
|
tidx = axis[0]; // [-rank(values), rank(values))
|
|
|
|
int rank = static_cast<int>(tensor->GetTensorDesc().GetShape().GetDimNum()); // rank
|
|
|
|
if (tidx < 0) {
|
|
|
|
tidx += rank;
|
|
|
|
}
|
|
|
|
// 1. tidx should in range [0,rank)
|
|
|
|
// 2. empty tensor only support case: [n],[m],[]
|
|
|
|
// case: [[],[]] ,[[],[]] ,[] or other case when rank >=2 is not supported
|
|
|
|
if (tidx < 0 || tidx >= rank || (has_empty_tensor && rank > kSupportEmptyTensorRank)) {
|
|
|
|
GELOGW("ConcatV2 info: tidx[%d]_rank[%d]_has_empty_tensor[bool:%d] cannot be supported, skip fold.",
|
|
|
|
tidx, rank, has_empty_tensor);
|
|
|
|
return NOT_CHANGED;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
REGISTER_KERNEL(CONCATV2, ConcatV2Kernel);
|
|
|
|
} // namespace ge
|