|
|
|
|
/**
|
|
|
|
|
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
|
|
|
|
*
|
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
|
*
|
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
*
|
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
|
* limitations under the License.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*!
|
|
|
|
|
* \file reduce_ops.h
|
|
|
|
|
* \brief
|
|
|
|
|
*/
|
|
|
|
|
#ifndef OPS_BUILT_IN_OP_PROTO_INC_REDUCE_OPS_H_
|
|
|
|
|
#define OPS_BUILT_IN_OP_PROTO_INC_REDUCE_OPS_H_
|
|
|
|
|
|
|
|
|
|
#include "graph/operator_reg.h"
|
|
|
|
|
|
|
|
|
|
namespace ge {
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs reduced batch normalization . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*x: A 5D Tensor of type float16 or float32, with format NC1HWC0 . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*@li sum: A 1D Tensor of type float32 for SUM reduced "x".
|
|
|
|
|
*@li square_sum: A 1D Tensor of type float32 for SUMSQ reduced "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* This operator is a BatchNorm fusion operator for updating the moving
|
|
|
|
|
* averages for training.
|
|
|
|
|
* This operator is used in conjunction with BNTrainingUpdate.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(BNTrainingReduce)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(square_sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(BNTrainingReduce)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs the backpropagation of BatchNorm . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Seven inputs, including:
|
|
|
|
|
*@li grads: A 5D Tensor of type float16 or float32, with format NC1HWC0, for
|
|
|
|
|
* the gradient.
|
|
|
|
|
*@li x: A 5D Tensor of type float16 or float32, with format NC1HWC0.
|
|
|
|
|
*@li diff_scale: A 5D Tensor of type float32, with format NC1HWC0,
|
|
|
|
|
* for the mean of "x".
|
|
|
|
|
*@li diff_offset: A 5D Tensor of type float32, with format NC1HWC0,
|
|
|
|
|
* for the variance of "x".
|
|
|
|
|
*@li scale: A 5D Tensor of type float32, with format NC1HWC0.
|
|
|
|
|
*@li batch_mean: A 5D Tensor of type float32, with format NC1HWC0,
|
|
|
|
|
* for the mean of "x".
|
|
|
|
|
*@li batch_variance: A 5D Tensor of type float32, with format NC1HWC0,
|
|
|
|
|
* for the variance of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*epsilon: An optional float32. Defaults to "0.0001". A small float number
|
|
|
|
|
* added to the variance of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A Tensor of type float16 or float32, with format NC1HWC0, for the offset
|
|
|
|
|
* of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* The preceding layer of this operator must be BNTrainingUpdateGrad . \n
|
|
|
|
|
|
|
|
|
|
*@see BNTrainingUpdateGrad
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(BNTrainingReduceGrad)
|
|
|
|
|
.INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(diff_scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(diff_offset, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(batch_mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.ATTR(epsilon, Float, 0.0001)
|
|
|
|
|
.OP_END_FACTORY_REG(BNTrainingReduceGrad)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs reduced batch normalization . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Seven inputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li x: A 5D Tensor of type float16 or float32.
|
|
|
|
|
*@li sum: A 1D Tensor of type float32 for the output of operator
|
|
|
|
|
* BNTrainingReduce.
|
|
|
|
|
*@li square_sum: A 1D Tensor of type float32 for the output of operator
|
|
|
|
|
* BNTrainingReduce.
|
|
|
|
|
*@li scale: A 1D Tensor of type float32, for the scaling factor.
|
|
|
|
|
*@li offset: A 1D Tensor of type float32, for the scaling offset.
|
|
|
|
|
*@li mean: A 1D Tensor of type float32, for the updated mean.
|
|
|
|
|
*@li variance: A 1D Tensor of type float32, for the updated variance . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li epsilon: A required float32, specifying the small value added to variance
|
|
|
|
|
* to avoid dividing by zero.
|
|
|
|
|
*@li factor: A required float32, specifying the weight for updating the mean
|
|
|
|
|
* and variance . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
* Five outputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li y: A 5D Tensor of type float16 or float32, for normalized "x".
|
|
|
|
|
*@li mean: A 5D Tensor of type float32, for the updated mean.
|
|
|
|
|
*@li variance: A 5D Tensor of type float32, for the updated variance.
|
|
|
|
|
*@li batch_mean: A 1D Tensor of type float32, for the mean of "x".
|
|
|
|
|
*@li batch_variance: A 1D Tensor of type float32, for the variance of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
*@li This operator is a BatchNorm fusion operator for updating the moving
|
|
|
|
|
averages for training.
|
|
|
|
|
*This operator is used in conjunction with BNTrainingReduce.
|
|
|
|
|
*@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square
|
|
|
|
|
* root instruction.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(BNTrainingUpdate)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(square_sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(offset, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.REQUIRED_ATTR(factor, Float)
|
|
|
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(BNTrainingUpdate)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs batch normalization for inference . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Five inputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li x: A 5D Tensor of type float16 or float32.
|
|
|
|
|
*@li scale: A 5D Tensor of type float32, for the scaling factor.
|
|
|
|
|
*@li offset: A 5D Tensor of type float32, for the scaling offset.
|
|
|
|
|
*@li mean: A 5D Tensor of type float32, for the mean.
|
|
|
|
|
*@li variance: A 5D Tensor of type float32, for the variance . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*epsilon: An optional float32, specifying the small value added to variance to
|
|
|
|
|
* avoid dividing by zero. Defaults to "0.0001" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A 5D Tensor of type float16 or float32 for the normalized "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
*For Ascend 310, the result accuracy fails to reach 1‰ due to the square root
|
|
|
|
|
* instruction.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(BNInfer)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(offset, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(BNInfer)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs reduced batch normalization. For some scene which don't contain
|
|
|
|
|
assignmoving average . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*Five inputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li x: A 5D Tensor of type float16 or float32.
|
|
|
|
|
*@li sum: A 5D Tensor of type float32 for the output of operator BNTrainingReduce.
|
|
|
|
|
*@li square_sum: A 5D Tensor of type float32 for the output of operator BNTrainingReduce.
|
|
|
|
|
*@li scale: A 5D Tensor of type float32, for the scaling factor.
|
|
|
|
|
*@li offset: A 5D Tensor of type float32, for the scaling offset . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*epsilon: A required float32, specifying the small value added to variance to avoid dividing by zero . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*Three outputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li y: A 5D Tensor of type float16 or float32, for normalized "x".
|
|
|
|
|
*@li batch_mean: A 5D Tensor of type float32, for the mean of "x".
|
|
|
|
|
*@li batch_variance: A 5D Tensor of type float32, for the variance of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
*This operator is used in conjunction with BNTrainingReduce.
|
|
|
|
|
For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(BNTrainingUpdateV2)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(square_sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(offset, TensorType({DT_FLOAT}))
|
|
|
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(BNTrainingUpdateV2)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs reduced batch normalization v3. For some scene which don't contain
|
|
|
|
|
assign moving average . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Five inputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li x: A 5D Tensor of type float16 or float32.
|
|
|
|
|
*@li sum: A 5D Tensor of type float32 for the output of operator BNTrainingReduce.
|
|
|
|
|
*@li square_sum: A 5D Tensor of type float32 for the output of operator BNTrainingReduce.
|
|
|
|
|
*@li scale: A 5D Tensor of type float32, for the scaling factor.
|
|
|
|
|
*@li offset: A 5D Tensor of type float32, for the scaling offset . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*epsilon: A required float32, specifying the small value added to variance to avoid dividing by zero . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*@li y: A 5D Tensor of type float16 or float32, for normalized "x".
|
|
|
|
|
*@li batch_mean: A 5D Tensor of type float32, for the mean of "x".
|
|
|
|
|
*@li batch_variance: A 5D Tensor of type float32, for the variance of "x".
|
|
|
|
|
*@li reserve_1: A 5D Tensor of type float32, for the mean of batch "x". Has the same type as batch_mean.
|
|
|
|
|
*@li reserve_2: A 5D Tensor of type float32, for the variance of batch "x". Has the same type as batch_mean . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
*@li This operator is used in conjunction with BNTrainingReduce.
|
|
|
|
|
*@li For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(BNTrainingUpdateV3)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(square_sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(offset, TensorType({DT_FLOAT}))
|
|
|
|
|
.REQUIRED_ATTR(epsilon, Float)
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(reserve_1, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(reserve_2, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(BNTrainingUpdateV3)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs the backpropagation of BatchNorm . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Four inputs, including:
|
|
|
|
|
*@li grads: A 5D Tensor of type float16 or float32, with format NC1HWC0,
|
|
|
|
|
* for the gradient.
|
|
|
|
|
*@li x: A 5D Tensor of type float16 or float32, with format NC1HWC0.
|
|
|
|
|
*@li batch_mean: A 5D Tensor of type float32, with format NC1HWC0,
|
|
|
|
|
* for the mean of "x".
|
|
|
|
|
*@li batch_variance: A 5D Tensor of type float32, with format NC1HWC0,
|
|
|
|
|
* for the variance of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*epsilon: An optional float32. Defaults to "0.0001". A small float number
|
|
|
|
|
* added to the variance of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*@li diff_scale: A Tensor of type float32, with format NC1HWC0,
|
|
|
|
|
* for the offset of "scale".
|
|
|
|
|
*@li diff_offset: A Tensor of type float32, with format NC1HWC0,
|
|
|
|
|
* for the offset of "offset" . \n
|
|
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(BNTrainingUpdateGrad)
|
|
|
|
|
.INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(batch_mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.ATTR(epsilon, Float, 0.0001)
|
|
|
|
|
.OUTPUT(diff_scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(diff_offset, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(BNTrainingUpdateGrad)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs the backpropagation of BatchNorm for inference . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Three inputs, including:
|
|
|
|
|
*@li grads: A 5D Tensor of type loat16 or float32, with format NC1HWC0, for the gradient.
|
|
|
|
|
*@li scale: A 5D Tensor of type float32, with format NC1HWC0.
|
|
|
|
|
*@li batch_variance: A 5D Tensor of type float32, with format NC1HWC0. It is an output of BatchNorm . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*epsilon: An optional float32. Defaults to "0.0001". A small float number added to the variance of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*x_backprop: A Tensor of type float16 or float32, with format NC1HWC0, for the offset of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* The preceding layer of this operator must be operator BatchNorm.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(BNInferGrad)
|
|
|
|
|
.INPUT(grads, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(x_backprop, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.ATTR(epsilon, Float, 0.0001)
|
|
|
|
|
.OP_END_FACTORY_REG(BNInferGrad)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the sum of elements across dimensions of a tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Two inputs, including:
|
|
|
|
|
*@li x: A Tensor. Must be one of the following types:
|
|
|
|
|
* float32, float64, int32, uint8, int16, int8,
|
|
|
|
|
* complex64, int64, qint8, quint8, qint32, uint16,
|
|
|
|
|
* complex128, float16, uint32, uint64, complex64, complex128.
|
|
|
|
|
*@li axes: A 1D list or tuple of int32 or int64. Specifies the dimensions to reduce . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*keep_dims: An optional bool. If "true", retains reduced dimensions with length 1. Defaults to "false" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: The reduced tensor. Has the same type and format as input "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator Sum.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceSum)
|
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
|
.INPUT(axes, TensorType::IndexNumberType())
|
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceSum)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the sum of elements across dimensions of a tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* One input:
|
|
|
|
|
*x: A Tensor. Up to 8D. Must be one of the following types: float16, float32. \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li axes: A required 1D list or tuple of int32 or int64. Specifies the dimensions to reduce.
|
|
|
|
|
*@li keep_dims: An optional bool. If "true", retains reduced dimensions with length 1. Defaults to "false" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: The reduced tensor. Has the same type and format as input "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator Sum.
|
|
|
|
|
*
|
|
|
|
|
* @par Restrictions:
|
|
|
|
|
* Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceSum instead.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceSumD)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
|
.REQUIRED_ATTR(axes, ListInt)
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceSumD)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Calculates the "logical sum" of elements of a tensor in a dimension . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*One input:
|
|
|
|
|
*x: The boolean tensor to reduce . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li keep_dims: A bool. If true, retains reduced dimensions with length 1.
|
|
|
|
|
*@li axis: The dimensions to reduce. If None, reduces all dimensions.
|
|
|
|
|
*Must be in the range [- rank (input_sensor), rank (input_sensor)) . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: The reduced tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator ReduceAll.
|
|
|
|
|
*
|
|
|
|
|
* @par Restrictions:
|
|
|
|
|
* Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceAll instead.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceAllD)
|
|
|
|
|
.INPUT(x, TensorType({DT_BOOL}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
|
|
|
|
.REQUIRED_ATTR(axes, ListInt)
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceAllD)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Calculates the "logical sum" of elements of a tensor in a dimension . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*Two inputs, including:
|
|
|
|
|
*@li x: The boolean tensor to reduce.
|
|
|
|
|
*@li axis: A mutable Tensor. The dimensions to reduce. If None, reduces all dimensions. Must be in the range [- rank (input_sensor), rank (input_sensor)) . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*keep_dims: A bool. If true, retains reduced dimensions with length 1 . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: The reduced tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator ReduceAll.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceAll)
|
|
|
|
|
.INPUT(x, TensorType({DT_BOOL}))
|
|
|
|
|
.INPUT(axes, TensorType::IndexNumberType())
|
|
|
|
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceAll)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Reduce a tensor on a certain axis based on product. . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*Two inputs, including:
|
|
|
|
|
*@li x: A mutable Tensor. Must be the type of NumberType.
|
|
|
|
|
*@li axis: A mutable Tensor. The dimensions to reduce . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li keep_dims: A bool. If true, retains reduced dimensions with length 1. Defaults to "False" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A Tensor. Has the same type and format as input "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator ReduceProd.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceProd)
|
|
|
|
|
.INPUT(x,TensorType::NumberType())
|
|
|
|
|
.INPUT(axes, TensorType::IndexNumberType())
|
|
|
|
|
.OUTPUT(y,TensorType::NumberType())
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceProd)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the product of elements across dimensions of a tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* One input:
|
|
|
|
|
*x: A Tensor. Must be one of the following types: float16, float, int8, uint8 . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li axes: A required int8, int16, int32, or int64. Specifies the dimensions to reduce. No default value.
|
|
|
|
|
*@li keep_dims: An optional bool. If "True", retains reduced dimensions with length 1. Defaults to "False" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A Tensor. Has the same type and format as input "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* "keep_dims" is in the range [-rank(input_tensor), rank(input_tensor)] . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator ReduceProd.
|
|
|
|
|
*
|
|
|
|
|
* @par Restrictions:
|
|
|
|
|
* Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceProd instead.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceProdD)
|
|
|
|
|
.INPUT(x,TensorType({DT_FLOAT, DT_UINT8, DT_INT8, DT_INT32, DT_FLOAT16}))
|
|
|
|
|
.OUTPUT(y,TensorType({DT_FLOAT, DT_UINT8, DT_INT8, DT_INT32, DT_FLOAT16}))
|
|
|
|
|
.REQUIRED_ATTR(axes, ListInt)
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceProdD)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Reduces "x" along the dimensions according to "axis" . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*Two inputs, including:
|
|
|
|
|
* @li x: A Tensor. Must be one of the following types: float16, float32, int8, uint8.
|
|
|
|
|
* @li axes: The dimensions to reduce. Must be one of the following types: int, list, tuple, NoneType.
|
|
|
|
|
* - If None (the default), reduces all dimensions.
|
|
|
|
|
* - Must be in the range [-rank(x), rank(x)) . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*keep_dims: A bool or NoneType.
|
|
|
|
|
* - If true, retains reduced dimensions with length 1.
|
|
|
|
|
* - If false, the rank of the tensor is reduced by 1 for each entry in axis.
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A Tensor. Has the same type as "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility:
|
|
|
|
|
* Compatible with the TensorFlow operator ReduceMean.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceMean)
|
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
|
.INPUT(axes, TensorType::IndexNumberType())
|
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceMean)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Reduces "x" along the dimensions according to "axis" . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*One input:
|
|
|
|
|
* @li x: A Tensor. Must be one of the following types: float16, float32 . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li axes: The dimensions to reduce. Must be one of the following types: int, list, tuple, NoneType.
|
|
|
|
|
* If None (the default), reduces all dimensions.
|
|
|
|
|
* Must be in the range [-rank(x), rank(x)).
|
|
|
|
|
*@li keep_dims: A bool or NoneType.
|
|
|
|
|
* - If true, retains reduced dimensions with length 1.
|
|
|
|
|
* - If false, the rank of the tensor is reduced by 1 for each entry in axis.
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A Tensor. Has the same type as "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility:
|
|
|
|
|
* Compatible with the TensorFlow operator ReduceMean.
|
|
|
|
|
*
|
|
|
|
|
* @par Restrictions:
|
|
|
|
|
* Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceMean instead.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceMeanD)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
|
.REQUIRED_ATTR(axes, ListInt)
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceMeanD)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Returns the maximum of elements across dimensions of a Tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Two inputs, including:
|
|
|
|
|
*@li x: A multi-dimensional Tensor of type float16, float32, or int16.
|
|
|
|
|
*@li axes: A Scalar of type int32, specifying the axes information of the index with the maximum value . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*keep_dims: A bool, specifying whether to keep dimensions for the output Tensor. Defaults to "false" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A multi-dimensional Tensor, specifying the maximum value of the corresponding axis in the tensor. Has the same type as "x". (If "keep_dims" is set to "false", the output dimensions are reduced by "dimension" compared with that of "x". Otherwise, the output has one fewer dimension than "x".)
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* The value range of "axes" is [-dims, dims - 1]. "dims" indicates the dimension length of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with TensorFlow operator Max.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceMax)
|
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
|
.INPUT(axes, TensorType::IndexNumberType())
|
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceMax)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Returns the maximum of elements across dimensions of a Tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*x: A multi-dimensional Tensor of type float16, float32, or int16 . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
* Two attributes, including:
|
|
|
|
|
*@li axes: A required listint, specifying the axes information of the index with the maximum value.
|
|
|
|
|
*@li keep_dims: A bool, specifying whether to keep dimensions for the output Tensor. Defaults to "false" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A multi-dimensional Tensor, specifying the maximum value of the corresponding axis in the tensor. Has the same type as "x". (If "keep_dims" is set to "false", the output dimensions are reduced by "dimension" compared with that of "x". Otherwise, the output has one fewer dimension than "x".)
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* The value range of "axis" is [-dims, dims - 1]. "dims" indicates the dimension length of "x" . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with TensorFlow operator Max.
|
|
|
|
|
*
|
|
|
|
|
* @par Restrictions:
|
|
|
|
|
* Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceMax instead.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceMaxD)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_UINT8, DT_INT8,
|
|
|
|
|
DT_FLOAT16, DT_INT32}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_UINT8, DT_INT8,
|
|
|
|
|
DT_FLOAT16, DT_INT32}))
|
|
|
|
|
.REQUIRED_ATTR(axes, ListInt)
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceMaxD)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the minimum of elements across dimensions of a tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*@li input_tensor: A Tensor. Must be one of the following types: float16, float32, int8, uint8.
|
|
|
|
|
*@li axes: A Tensor of type int8 or int32. Specifies the dimensions to reduce. Defaults to "None".
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*keep_dims: An optional bool. If "True", reduced dimensions will be retained. Defaults to "False".
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*output_tensor: A Tensor. Must be one of the following types: float16, float32, int8, uint8 . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator reduce_min.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceMin)
|
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
|
.INPUT(axes, TensorType::IndexNumberType())
|
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceMin)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the minimum of elements across dimensions of a tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*input_min: A Tensor. Must be one of the following types: float16, float32, int8, uint8 . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li axes: An optional int32, list, tuple, or NoneType value. Specifies the dimensions to reduce. Defaults to "None".
|
|
|
|
|
*@li keep_dims: An optional bool or NoneType value. If "True", reduced dimensions will be retained. Defaults to "None" (equivalent to "False").
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*output_min: A Tensor. Must be one of the following types: float16, float32, int8, uint8 . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator reduce_min.
|
|
|
|
|
*
|
|
|
|
|
* @par Restrictions:
|
|
|
|
|
* Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceMin instead.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceMinD)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT,DT_INT8,DT_UINT8}))
|
|
|
|
|
.REQUIRED_ATTR(axes, ListInt)
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceMinD)
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the "logical or" of elements across dimensions of a tensor.
|
|
|
|
|
* Reduces "x" along the dimensions given in "axes".
|
|
|
|
|
* Unless "keep_dims" is true, the rank of the tensor is reduced by 1 for each
|
|
|
|
|
* entry in "axes". If "keep_dims" is true, the reduced dimensions
|
|
|
|
|
* are retained with length 1.
|
|
|
|
|
*
|
|
|
|
|
* If "axes" is None, all dimensions are reduced, and a
|
|
|
|
|
* tensor with a single element is returned.
|
|
|
|
|
*
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* Only support bool
|
|
|
|
|
*
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*@li x : The boolean tensor to reduce.
|
|
|
|
|
*@li axes: The dimensions to reduce. If "None" (default), reduces all
|
|
|
|
|
* dimensions. Must be in the range "[-rank(x), rank(x))".
|
|
|
|
|
*
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
* keep_dims: If true, retains reduced dimensions with length 1.
|
|
|
|
|
*
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
* y: The reduced tensor
|
|
|
|
|
*
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
*Compatible with the TensorFlow operator reduce_any.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceAny)
|
|
|
|
|
.INPUT(x, TensorType({DT_BOOL}))
|
|
|
|
|
.INPUT(axes, TensorType::IndexNumberType())
|
|
|
|
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceAny)
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the "logical or" of elements across dimensions of a tensor.
|
|
|
|
|
* Reduces "x" along the dimensions given in "axes".
|
|
|
|
|
* Unless "keep_dims" is true, the rank of the tensor is reduced by 1 for each
|
|
|
|
|
* entry in "axes". If "keep_dims" is true, the reduced dimensions
|
|
|
|
|
* are retained with length 1.
|
|
|
|
|
*
|
|
|
|
|
* If "axis" is None, all dimensions are reduced, and a
|
|
|
|
|
* tensor with a single element is returned.
|
|
|
|
|
*
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* Only support bool
|
|
|
|
|
*
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* x: The boolean tensor to reduce.
|
|
|
|
|
*
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li axes: The dimensions to reduce. Must be in the range "[-rank(x), rank(x))".
|
|
|
|
|
*@li keep_dims: If true, retains reduced dimensions with length 1.
|
|
|
|
|
*
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
* y: The reduced tensor
|
|
|
|
|
*
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
*Compatible with the TensorFlow operator reduce_any.
|
|
|
|
|
*
|
|
|
|
|
* @par Restrictions:
|
|
|
|
|
* Warning: THIS FUNCTION IS DEPRECATED. Please use ReduceAny instead.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(ReduceAnyD)
|
|
|
|
|
.INPUT(x, TensorType({DT_BOOL}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_BOOL}))
|
|
|
|
|
.REQUIRED_ATTR(axes, ListInt)
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(ReduceAnyD)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Compute reduction on dimensions specified by "axis".
|
|
|
|
|
*Four reduction operations are provided:
|
|
|
|
|
*SUM Computes the sum of elements across specified dimensions of a tensor.
|
|
|
|
|
*ASUM Computes the sum of absolute values of elements across specified dimensions of a tensor.
|
|
|
|
|
*SUMSQ Computes the sum of squares of elements across specified dimensions of a tensor.
|
|
|
|
|
*SUMSQ Computes the mean values of elements across specified dimensions of a tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*x: A Tensor of type float16 or float32
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li operation: An optional int32 from 1(SUM), 2(ASUM), 3(SUMSQ), and 4(MEAN),
|
|
|
|
|
*specifying the reduction algorithm. Defaults to "1".
|
|
|
|
|
*@li axis: An optional int32, specifying the first axis to reduce. Defaults to "0".
|
|
|
|
|
*The value range is [-N, N-1], where N is the input tensor rank.
|
|
|
|
|
*@li coeff: An optional float32, specifying the scale coefficient. Defaults to "1.0" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A Tensor. Has the same type as "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints: The Reduction operator supports type float16 only on the device chip.
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the Caffe operator Reduction.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(Reduction)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT}))
|
|
|
|
|
.ATTR(operation, Int, 1)
|
|
|
|
|
.ATTR(axis, Int, 0)
|
|
|
|
|
.ATTR(coeff, Float, 1.0)
|
|
|
|
|
.OP_END_FACTORY_REG(Reduction);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the euclidean norm of elements across dimensions of a tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*@li input_tensor: A Tensor. Must be one of the following types: float16, float32, int32.
|
|
|
|
|
*@li axes: A Tensor of type int8 or int32. Specifies the dimensions to reduce. Defaults to "None" . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*keep_dims: An optional bool. If "True", reduced dimensions will be retained. Defaults to "False" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*output_tensor: A Tensor. Must be one of the following types: float16, float32, int32 . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator EuclideanNorm.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(EuclideanNorm)
|
|
|
|
|
.INPUT(x, TensorType::NumberType())
|
|
|
|
|
.INPUT(axes, TensorType::IndexNumberType())
|
|
|
|
|
.OUTPUT(y, TensorType::NumberType())
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(EuclideanNorm)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Computes the euclidean norm of elements across dimensions of a tensor . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*input_min: A Tensor. Must be one of the following types: float16, float32, int32 . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li axes: An optional int32, list, tuple, or NoneType value. Specifies the dimensions to reduce. Defaults to "None".
|
|
|
|
|
*@li keep_dims: An optional bool or NoneType value. If "True", reduced dimensions will be retained. Defaults to "None" (equivalent to "False") . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*output_min: A Tensor. Must be one of the following types: float16, float32, int32 . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* If "axes = None", all dimensions will be reduced. "axes" must be in the range [-rank(input_shape), rank(input_shape)) . \n
|
|
|
|
|
|
|
|
|
|
*@par Third-party framework compatibility
|
|
|
|
|
* Compatible with the TensorFlow operator EuclideanNorm.
|
|
|
|
|
*
|
|
|
|
|
* @par Restrictions:
|
|
|
|
|
* Warning: THIS FUNCTION IS DEPRECATED. Please use EuclideanNorm instead.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(EuclideanNormD)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16}))
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_FLOAT16}))
|
|
|
|
|
.ATTR(axes, ListInt, {})
|
|
|
|
|
.ATTR(keep_dims, Bool, false)
|
|
|
|
|
.OP_END_FACTORY_REG(EuclideanNormD)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs instance normalization for inference . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Five inputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li x: A Tensor of type float16 or float32.
|
|
|
|
|
*@li gamma: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling gamma.
|
|
|
|
|
*@li beta: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling beta.
|
|
|
|
|
*@li mean: A [N, C1, 1, 1, C0] ensor of type float32, for the mean.
|
|
|
|
|
*@li variance: A [N, C1, 1, 1, C0] Tensor of type float32, for the variance . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*epsilon: An optional float32, specifying the small value added to variance to avoid dividing by zero.
|
|
|
|
|
Defaults to "0.00001" . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*y: A Tensor of type float16 or float32 for the normalized "x".
|
|
|
|
|
*batch_mean: A Tensor of type float32 for the result mean.
|
|
|
|
|
*batch_ variance: A Tensor of type float32 for the result variance . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
*For Ascend 310, the result accuracy fails to reach 1<EFBFBD> due to the square root instruction.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(INInferV2)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(gamma, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(beta, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.ATTR(epsilon, Float, 0.00001)
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(INInferV2)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs reduced instance normalization . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*x: A Tensor of type float16 or float32, with format NC1HWC0 . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*@li sum: A Tensor of type float32 for SUM reduced "x".
|
|
|
|
|
*@li square_sum: A Tensor of type float32 for SUMSQ reduced "x" . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* This operator is a InstanceNorm fusion operator for updating the moving averages for training.
|
|
|
|
|
* This operator is used in conjunction with INTrainingUpdateV2.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(INTrainingReduceV2)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(square_sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(INTrainingReduceV2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs update instance normalization . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Seven inputs, including: (NC1HWC0supported)
|
|
|
|
|
*@li x: A Tensor of type float16 or float32.
|
|
|
|
|
*@li sum: A T [N, C1, 1, 1, C0] ensor of type float32 for the output of operator INTrainingReduceV2.
|
|
|
|
|
*@li square_sum: A [N, C1, 1, 1, C0] Tensor of type float32 for the output of operator INTrainingReduceV2.
|
|
|
|
|
*@li gamma: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling gamma.
|
|
|
|
|
*@li beta: A [N, C1, 1, 1, C0] Tensor of type float32, for the scaling beta.
|
|
|
|
|
*@li mean: A [N, C1, 1, 1, C0] Tensor of type float32, for the updated mean.
|
|
|
|
|
*@li variance: A [N, C1, 1, 1, C0] Tensor of type float32, for the updated variance . \n
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li momentum: A required float32, specifying the momentum to update mean and var.
|
|
|
|
|
*@li epsilon: A required float32, specifying the small value added to variance to avoid dividing by zero . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
* Three outputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li y: A Tensor of type float16 or float32, for normalized "x".
|
|
|
|
|
*@li batch_mean: A Tensor of type float32, for the updated mean.
|
|
|
|
|
*@li batch_variance: A Tensor of type float32, for the updated variance . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
*@li This operator is a InstanceNorm fusion operator for updating the moving averages for training.
|
|
|
|
|
* This operator is used in conjunction with INTrainingReduceV2.
|
|
|
|
|
*@li For Ascend 310, the result accuracy fails to reach 1<EFBFBD> due to the square root instruction.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(INTrainingUpdateV2)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(square_sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(gamma, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(beta, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.ATTR(momentum, Float, 0.1)
|
|
|
|
|
.ATTR(epsilon, Float, 0.00001)
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(INTrainingUpdateV2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs reduced group normalization . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
*x: A Tensor of type float16 or float32, with format NCHW NHWC . \n
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
*@li sum: A Tensor of type float32 for SUM reduced "x".
|
|
|
|
|
*@li square_sum: A Tensor of type float32 for SUMSQ reduced "x".
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li num_groups: Int, specifying the num of groups. required, same to GNTrainingUpdate . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
* This operator is a GroupNorm fusion operator for updating the moving averages for training.
|
|
|
|
|
* This operator is used in conjunction with GNTrainingUpdate.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(GNTrainingReduce)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(square_sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.ATTR(num_groups, Int, 2)
|
|
|
|
|
.OP_END_FACTORY_REG(GNTrainingReduce)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*@brief Performs update group normalization . \n
|
|
|
|
|
|
|
|
|
|
*@par Inputs:
|
|
|
|
|
* Eight inputs, including: (NCHW NHWC supported)
|
|
|
|
|
*@li x: A Tensor of type float16 or float32.
|
|
|
|
|
*@li sum: A 5D Tensor of type float32,
|
|
|
|
|
shape is [N, G, 1, 1, 1] for NCHW, [N, 1, 1, G, 1] for NHWC
|
|
|
|
|
for the output of operator GNTrainingReduce.
|
|
|
|
|
*@li square_sum: A 5D Tensor of type float32,
|
|
|
|
|
shape is [N, G, 1, 1, 1] for NCHW, [N, 1, 1, G, 1] for NHWC
|
|
|
|
|
for the output of operator GNTrainingReduce.
|
|
|
|
|
*@li scale: A 5D Tensor of type float32,
|
|
|
|
|
shape is [1, G, 1, 1, 1] for NCHW, [1, 1, 1, G, 1] for NHWC
|
|
|
|
|
is for the scaling gamma.
|
|
|
|
|
*@li offset: A 5D Tensor of type float32,
|
|
|
|
|
shape is [1, G, 1, 1, 1] for NCHW, [1, 1, 1, G, 1] for NHWC
|
|
|
|
|
for the scaling beta.
|
|
|
|
|
*@li mean: A 5D Tensor of type float32,
|
|
|
|
|
shape is [N, G, 1, 1, 1] for NCHW, [N, 1, 1, G, 1] for NHWC
|
|
|
|
|
for the updated mean.
|
|
|
|
|
*@li variance: A 5D Tensor of type float32,
|
|
|
|
|
shape is [N, G, 1, 1, 1] for NCHW, [N, 1, 1, G, 1] for NHWC
|
|
|
|
|
for the updated variance.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*@par Attributes:
|
|
|
|
|
*@li epsilon: A float32, specifying the small value added to variance to avoid dividing by zero.
|
|
|
|
|
*@li num_groups: Int, specifying the num of groups. required, same to GNTrainingReduce
|
|
|
|
|
|
|
|
|
|
*@par Outputs:
|
|
|
|
|
* Three outputs, including: (NC1HWC0 supported)
|
|
|
|
|
*@li y: A Tensor of type float16 or float32, for normalized "x".
|
|
|
|
|
*@li batch_mean: A Tensor of type float32, for the updated mean.
|
|
|
|
|
*@li batch_variance: A Tensor of type float32, for the updated variance . \n
|
|
|
|
|
|
|
|
|
|
*@attention Constraints:
|
|
|
|
|
*@li This operator is a InstanceNorm fusion operator for updating the moving averages for training.
|
|
|
|
|
* This operator is used in conjunction with GNTrainingUpdate.
|
|
|
|
|
*@li For Ascend 310, the result accuracy fails to reach 1<EFBFBD> due to the square root instruction.
|
|
|
|
|
*/
|
|
|
|
|
REG_OP(GNTrainingUpdate)
|
|
|
|
|
.INPUT(x, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.INPUT(sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.INPUT(square_sum, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(scale, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(offset, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OPTIONAL_INPUT(variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.ATTR(num_groups, Int, 2)
|
|
|
|
|
.ATTR(epsilon, Float, 0.0001)
|
|
|
|
|
.OUTPUT(y, TensorType({DT_FLOAT16,DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_mean, TensorType({DT_FLOAT}))
|
|
|
|
|
.OUTPUT(batch_variance, TensorType({DT_FLOAT}))
|
|
|
|
|
.OP_END_FACTORY_REG(GNTrainingUpdate)
|
|
|
|
|
|
|
|
|
|
} //namespace ge
|
|
|
|
|
|
|
|
|
|
#endif // OPS_BUILT_IN_OP_PROTO_INC_REDUCE_OPS_H_
|