add errlog and modify geloge --1

pull/1389/head
liudingyan 4 years ago
parent aeff798209
commit 99b60f4f92

@ -39,7 +39,8 @@ AllocationAttr::AllocationAttr(void *try_reuse_addr) : AllocationAttr(0, try_reu
NpuMemoryAllocator *NpuMemoryAllocator::GetAllocator() {
int32_t device_id = 0;
if (rtGetDevice(&device_id) != RT_ERROR_NONE) {
GELOGE(RT_FAILED, "Failed to get device id");
GELOGE(RT_FAILED, "[Get][Device] Failed when %s.", __FUNCTION__);
REPORT_INNER_ERROR("E19999", "rtGetDevice failed when %s.", __FUNCTION__);
return nullptr;
}
@ -57,7 +58,10 @@ void *NpuMemoryAllocator::Allocate(std::size_t size, AllocationAttr *attr) {
}
if (allocate_size == 0) {
GELOGE(MEMALLOC_FAILED, "Memory size is 0, device_id = %u, size = %zu", device_id_, allocate_size);
GELOGE(MEMALLOC_FAILED, "[Check][Param:size_t]Memory size is 0, device_id = %u, size = %zu when %s.",
device_id_, allocate_size, __FUNCTION__);
REPORT_INNER_ERROR("E19999", "Memory size is 0, device_id = %u, size = %zu when %s.",
device_id_, allocate_size, __FUNCTION__);
return nullptr;
}
@ -68,7 +72,8 @@ void *NpuMemoryAllocator::Allocate(std::size_t size, AllocationAttr *attr) {
buffer = MemManager::Instance().HostMemInstance(RT_MEMORY_HBM).Malloc(allocate_size);
} else {
if (allocate_size > kMaxHbmMemorySize) {
GELOGE(PARAM_INVALID, "Invalid HBM memory size: %zu", allocate_size);
GELOGE(PARAM_INVALID, "[Check][Param:size_t]Invalid HBM memory size: %zu when %s.", allocate_size, __FUNCTION__);
REPORT_CALL_ERROR("E19999", "Invalid HBM memory size: %zu when %s.", allocate_size, __FUNCTION__);
return nullptr;
}
void *try_reuse_addr = nullptr;
@ -87,7 +92,10 @@ void *NpuMemoryAllocator::Allocate(std::size_t size, AllocationAttr *attr) {
.Malloc(allocate_size, reinterpret_cast<uint8_t *>(try_reuse_addr), device_id_);
}
if (buffer == nullptr) {
GELOGE(MEMALLOC_FAILED, "Failed to malloc memory, device_id = %u, size = %zu", device_id_, allocate_size);
GELOGE(MEMALLOC_FAILED, "[Malloc][Memory] Failed, device_id = %u, size = %zu when %s.",
device_id_, allocate_size, __FUNCTION__);
REPORT_CALL_ERROR("E19999", "malloc memory failed, device_id = %u, size = %zu when %s.",
device_id_, allocate_size, __FUNCTION__);
return nullptr;
}

@ -32,7 +32,8 @@ std::unique_ptr<TensorBuffer> TensorBuffer::Create(NpuMemoryAllocator *allocator
}
if (allocator == nullptr) {
GELOGE(INTERNAL_ERROR, "allocator is NULL");
GELOGE(INTERNAL_ERROR, "[Check][Param:NpuMemoryAllocator] allocator is NULL, when %s.", __FUNCTION__);
REPORT_INNER_ERROR("E19999", "input allocator is NULL, when %s.", __FUNCTION__);
return nullptr;
}
@ -42,7 +43,8 @@ std::unique_ptr<TensorBuffer> TensorBuffer::Create(NpuMemoryAllocator *allocator
}
buffer = allocator->Allocate(size, attr);
if (buffer == nullptr) {
GELOGE(MEMALLOC_FAILED, "Failed to allocate memory. size = %zu", size);
GELOGE(MEMALLOC_FAILED, "[Allocate][Memory] Failed. size = %zu, when %s.", size, __FUNCTION__);
REPORT_CALL_ERROR("E19999", "allocate failed, size = %zu, when %s.", size, __FUNCTION__);
return nullptr;
}

@ -59,7 +59,10 @@ Status GraphExecutionContext::Synchronize(rtStream_t rt_stream) {
return SUCCESS;
}
GELOGE(RT_FAILED, "Failed to invoke rtStreamSynchronize, ret = %d", rt_ret);
GELOGE(RT_FAILED,
"[Invoke][rtStreamSynchronize] failed when GraphExecutionContext %s, ret = %d", __FUNCTION__, rt_ret);
REPORT_CALL_ERROR("E19999",
"invoke rtStreamSynchronize failed when GraphExecutionContext %s, ret = %d", __FUNCTION__, rt_ret);
return RT_FAILED;
}
} // namespace hybrid

@ -52,7 +52,7 @@ void HybridModelAsyncExecutor::SetModelName(const string &model_name) {
Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr<InputDataWrapper> &data) {
GE_CHK_STATUS_EXEC(data_inputer_->Push(data), return domi::DATA_QUEUE_ISFULL,
"Data queue is full, please call again later, model_id %u ", model_id_);
"[Push][Data] Data queue is full, please call again later, model_id %u ", model_id_);
GELOGD("EnqueueData successfully. model_id = %u, data_index = %u", data->GetInput().model_id, data->GetInput().index);
return SUCCESS;
}
@ -60,7 +60,8 @@ Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr<InputDataWrapper>
Status HybridModelAsyncExecutor::Start(const std::shared_ptr<ModelListener> &listener) {
GELOGD("HybridModelExecutor::Start IN, has listener = %d", listener != nullptr);
std::lock_guard<std::mutex> lk(mu_);
GE_CHK_BOOL_RET_STATUS(!run_flag_, INTERNAL_ERROR, "Model already started.");
GE_CHK_BOOL_RET_STATUS(!run_flag_, INTERNAL_ERROR,
"[Check][RunState] Model already started when HybridModelAsyncExecutor %s.", __FUNCTION__);
run_flag_ = true;
listener_ = listener;
@ -71,7 +72,8 @@ Status HybridModelAsyncExecutor::Start(const std::shared_ptr<ModelListener> &lis
return RunInternal();
});
GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR, "Failed to start.");
GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR,
"[Check][RunState] Failed to start when HybridModelAsyncExecutor %s.", __FUNCTION__);
GELOGD("HybridModelExecutor::Start successfully");
return SUCCESS;
}
@ -105,26 +107,29 @@ Status HybridModelAsyncExecutor::Init() {
executor_ = std::unique_ptr<HybridModelExecutor>(new(std::nothrow) HybridModelExecutor(model_, device_id_, stream_));
GE_CHECK_NOTNULL(executor_);
GE_CHK_STATUS_RET(executor_->Init(), "Failed to init hybrid engine");
GE_CHK_STATUS_RET(DumpOpDebug(), "Dump op debug failed in hybrid engine");
GE_CHK_STATUS_RET(executor_->Init(),
"[Init][HybridModelExecutor] failed when HybridModelAsyncExecutor %s.", __FUNCTION__);
GE_CHK_STATUS_RET(DumpOpDebug(), "[Dump][OpDebug] failed when HybridModelAsyncExecutor %s.", __FUNCTION__);
GELOGI("HybridModel stage nums:%zu", model_->GetRootGraphItem()->NumGroups());
if (model_->GetRootGraphItem()->NumGroups() >= kMinimumPiplineStages) {
pipe_executor_ =
std::unique_ptr<HybridModelPipelineExecutor>(new(std::nothrow) HybridModelPipelineExecutor(model_, device_id_));
GE_CHECK_NOTNULL(pipe_executor_);
GE_CHK_STATUS_RET(pipe_executor_->Init(), "Failed to init hybrid engine");
GE_CHK_STATUS_RET(pipe_executor_->Init(),
"[Init][HybridModelPipelineExecutor] failed when HybridModelAsyncExecutor %s.", __FUNCTION__);
}
GE_CHK_STATUS_RET(InitInputDesc(), "Failed to init input tensors");
GE_CHK_STATUS_RET(InitInputDesc(), "[Init][InputDesc] failed when HybridModelAsyncExecutor %s.", __FUNCTION__);
return SUCCESS;
}
Status HybridModelAsyncExecutor::PreRun(InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
GE_CHK_STATUS_RET(SyncVarData(), "Failed to sync var data");
GE_CHK_STATUS_RET(SyncVarData(), "[Invoke][SyncVarData] failed when HybridModelAsyncExecutor %s.", __FUNCTION__);
RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[SyncVarData] End");
GE_CHK_STATUS_RET(PrepareInputs(current_data, args), "Failed to copy input data to model");
GE_CHK_STATUS_RET(PrepareInputs(current_data, args),
"[Invoke][PrepareInputs] failed to copy input data to model when HybridModelAsyncExecutor %s.", __FUNCTION__);
RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[CopyInputData] End");
return SUCCESS;
}
@ -155,7 +160,7 @@ Status HybridModelAsyncExecutor::RunInternal() {
GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
ret != SUCCESS, (void) HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
continue, "PreRun failed."); // [No need to check value]
continue, "[Invoke][PreRun] failed when HybridModelAsyncExecutor %s.", __FUNCTION__); // [No need to check value]
if (pipe_executor_ != nullptr) {
GELOGI("HybridModel will execute in pipeline mode");
@ -199,7 +204,11 @@ Status HybridModelAsyncExecutor::HandleResult(Status exec_ret,
}
if (exec_ret != SUCCESS) {
GELOGE(exec_ret, "Failed to execute graph. model_id = %u", model_id_);
GELOGE(exec_ret,
"[Check][Param:Status] failed to execute graph when HybridModelAsyncExecutor %s. model_id = %u",
__FUNCTION__, model_id_);
REPORT_INNER_ERROR("E19999",
"failed to execute graph when HybridModelAsyncExecutor %s. model_id = %u", __FUNCTION__, model_id_);
return OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
}
@ -235,8 +244,12 @@ Status HybridModelAsyncExecutor::SyncVarData() {
Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
if (current_data.blobs.size() < input_tensor_desc_.size()) {
GELOGE(PARAM_INVALID, "Blob size mismatches, expect at least %zu, but got %zu",
input_tensor_desc_.size(), current_data.blobs.size());
GELOGE(PARAM_INVALID,
"[Check][Size]Blob size mismatches, expect at least %zu, but got %zu when HybridModelAsyncExecutor %s.",
input_tensor_desc_.size(), current_data.blobs.size(), __FUNCTION__);
REPORT_INNER_ERROR("E19999",
"Blob size mismatches, expect at least %zu, but got %zu when HybridModelAsyncExecutor %s.",
input_tensor_desc_.size(), current_data.blobs.size(), __FUNCTION__);
return PARAM_INVALID;
}
@ -248,8 +261,12 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, Hy
auto tensor_size = input_sizes_[input_index];
if (is_input_dynamic_[input_index]) {
if (input_index >= current_data.shapes.size()) {
GELOGE(PARAM_INVALID, "Shape index out of range, index = %zu, shape size = %zu",
input_index, current_data.shapes.size());
GELOGE(PARAM_INVALID,
"[Check][Range]Shape index out of range, index = %zu, shape size = %zu when HybridModelAsyncExecutor %s.",
input_index, current_data.shapes.size(), __FUNCTION__);
REPORT_INNER_ERROR("E19999",
"Shape index out of range, index = %zu, shape size = %zu when HybridModelAsyncExecutor %s.",
input_index, current_data.shapes.size(), __FUNCTION__);
return PARAM_INVALID;
}
auto &tensor_desc = input_tensor_desc_[input_index];
@ -257,15 +274,19 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, Hy
std::vector<std::pair<int64_t, int64_t>> range;
auto range_ret = tensor_desc->GetShapeRange(range);
GE_CHK_BOOL_RET_STATUS(range_ret == GRAPH_SUCCESS, INTERNAL_ERROR,
"Get shape range failed, ret=%u.", range_ret);
"[Invoke][GetShapeRange] failed, ret=%u.", range_ret);
for (size_t k = 0; k < range.size(); ++k) {
if (k >= shape.GetDimNum()) {
break;
}
// range[k].second can be -1
if (shape.GetDim(k) < range[k].first || (range[k].second >= 0 && shape.GetDim(k) > range[k].second)) {
GELOGE(PARAM_INVALID, "Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]",
input_index, k, shape.GetDim(k), range[k].first, range[k].second);
GELOGE(PARAM_INVALID,
"[Check][Range]Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]",
input_index, k, shape.GetDim(k), range[k].first, range[k].second);
REPORT_INNER_ERROR("E19999",
"Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld, range = [%ld, %ld]",
input_index, k, shape.GetDim(k), range[k].first, range[k].second);
return PARAM_INVALID;
}
}
@ -273,9 +294,8 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, Hy
args.input_desc[input_index] = tensor_desc;
GELOGD("Update shape of input[%zu] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str());
GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size),
"Failed to calc tensor size, index = %zu, shape = [%s]",
input_index,
tensor_desc->GetShape().ToString().c_str());
"[Invoke][GetTensorMemorySizeInBytes]Failed to calc tensor size, index = %zu, shape = [%s]",
input_index, tensor_desc->GetShape().ToString().c_str());
GELOGD("Input tensor[%zu] size = %zu", input_index, tensor_size);
}
@ -293,7 +313,7 @@ Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, Hy
auto mem_size = static_cast<uint64_t>(tensor_size);
GE_CHK_BOOL_RET_STATUS(mem_size >= data_buf.length,
PARAM_INVALID,
"input data size(%lu) does not match model required size(%lu), ret failed.",
"[Check][Size]input data size(%lu) does not match model required size(%lu), ret failed.",
data_buf.length,
mem_size);
@ -351,7 +371,7 @@ Status HybridModelAsyncExecutor::OnComputeDone(uint32_t data_index, uint32_t res
GELOGD("OnComputeDone. model id = %u, data index = %u, execution ret = %u", model_id_, data_index, result_code);
if (listener_ != nullptr) {
GE_CHK_STATUS(listener_->OnComputeDone(model_id_, data_index, result_code, outputs),
"OnComputeDone failed");
"[Invoke][OnComputeDone] failed.");
}
return result_code;
@ -365,9 +385,12 @@ Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &a
std::vector<TensorValue> &output_tensors = args.outputs;
if (output_tensor_desc_list.size() != output_tensors.size()) {
GELOGE(INTERNAL_ERROR,
"Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu",
output_tensor_desc_list.size(),
output_tensors.size());
"[Check][Size]Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu "
"when HybridModelAsyncExecutor %s.",
output_tensor_desc_list.size(), output_tensors.size(), __FUNCTION__);
REPORT_INNER_ERROR("E19999", "Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu "
"when HybridModelAsyncExecutor %s.",
output_tensor_desc_list.size(), output_tensors.size(), __FUNCTION__);
return INTERNAL_ERROR;
}
@ -399,8 +422,10 @@ Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &a
GE_CHECK_LE(output_size, UINT32_MAX);
if (output_tensor.GetSize() < static_cast<size_t>(output_size)) {
GELOGE(INTERNAL_ERROR,
"output[%zu] tensor size(%zu) is not enough for output shape [%s]",
i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str());
"[Check][Size]output[%zu] tensor size(%zu) is not enough for output shape [%s]",
i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str());
REPORT_INNER_ERROR("E19999", "output[%zu] tensor size(%zu) is not enough for output shape [%s]",
i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str());
return INTERNAL_ERROR;
}
@ -456,7 +481,7 @@ Status HybridModelAsyncExecutor::Execute(const std::vector<DataBuffer> &inputs,
args.input_desc.emplace_back(tensor_desc_ptr);
}
GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
GE_CHK_STATUS_RET(executor_->Execute(args), "[Invoke][Execute] Failed when HybridModelAsyncExecutor %s.", __FUNCTION__);
for (const auto &output_tensor_desc : args.output_desc) {
output_desc.emplace_back(*output_tensor_desc);
}
@ -477,13 +502,14 @@ Status HybridModelAsyncExecutor::Execute(const vector<GeTensor> &inputs, vector<
}
HybridModelExecutor::ExecuteArgs args;
GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "Failed to copy input data to model");
GE_CHK_STATUS_RET(PrepareInputs(input_data, args), "[Invoke][PrepareInputs]Failed to copy input data to model");
GELOGD("Done copying input data successfully.");
GE_CHK_STATUS_RET(executor_->Execute(args), "Failed to execute model.");
GE_CHK_STATUS_RET(executor_->Execute(args), "[Invoke][Execute] Failed.");
std::vector<ge::OutputTensorInfo> output_tensor_info_list;
OutputData output_data;
GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list), "Failed to copy outputs.");
GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list),
"[Invoke][CopyOutputs]Failed to copy outputs.");
GELOGD("Done copying output data successfully. output count = %zu", output_tensor_info_list.size());
int out_index = 0;
@ -534,7 +560,7 @@ Status HybridModelAsyncExecutor::DumpOpDebug() {
loop_cond = const_cast<void *>(varible_loop_cond->GetData());
}
data_dumper_.SetLoopAddr(global_step, loop_per_iter, loop_cond);
GE_CHK_STATUS_RET(data_dumper_.LoadDumpInfo(), "LoadDumpInfo failed in hybrid engine");
GE_CHK_STATUS_RET(data_dumper_.LoadDumpInfo(), "[Invoke][LoadDumpInfo] failed in hybrid engine");
GELOGD("Dump op debug SUCCESS in hybrid engine");
}
return SUCCESS;

@ -102,11 +102,13 @@ Status NodeDoneCallback::PrepareConstInputs(const NodeItem &node_item) {
if (output_tensor->GetSize() < static_cast<size_t>(tensor_size)) {
GELOGE(INTERNAL_ERROR,
"[%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s",
node_item.NodeName().c_str(),
output_idx,
tensor_size,
output_tensor->DebugString().c_str());
"[Check][Size][%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s when %s.",
node_item.NodeName().c_str(), output_idx, tensor_size,
output_tensor->DebugString().c_str(), __FUNCTION__);
REPORT_INNER_ERROR("E19999",
"[%s] Tensor size is not enough. output index = %d, required size = %ld, tensor = %s when %s.",
node_item.NodeName().c_str(), output_idx, tensor_size,
output_tensor->DebugString().c_str(), __FUNCTION__);
return INTERNAL_ERROR;
}
@ -128,7 +130,7 @@ Status NodeDoneCallback::PrepareConstInputs(const NodeItem &node_item) {
GE_CHK_GRAPH_STATUS_RET(RuntimeInferenceContext::GetContext(context_id, &runtime_infer_ctx),
"Failed to get RuntimeInferenceContext, context_id = %s", context_id.c_str());
GE_CHK_STATUS_RET(runtime_infer_ctx->SetTensor(node_item.node_id, output_idx, std::move(tensor)),
"Failed to SetTensor, node = %s, output_index = %d", node_item.NodeName().c_str(), output_idx);
"[Set][Tensor] Failed, node = %s, output_index = %d", node_item.NodeName().c_str(), output_idx);
GELOGD("[%s] Output[%d] cached successfully in context: %s. node_id = %d, shape = [%s]",
node_item.NodeName().c_str(),
output_idx,
@ -173,7 +175,8 @@ Status NodeDoneCallback::GetTaskDescInfo(const NodePtr node, const HybridModel *
Status NodeDoneCallback::ProfilingReport() {
auto node = context_->GetNodeItem().node;
if (node == nullptr) {
GELOGE(PARAM_INVALID, "Get node is nullptr");
GELOGE(PARAM_INVALID, "[Get][Node] value is nullptr when %s.", __FUNCTION__);
REPORT_INNER_ERROR("E19999", "Get node failed, when %s.", __FUNCTION__);
return PARAM_INVALID;
}
@ -190,7 +193,8 @@ Status NodeDoneCallback::ProfilingReport() {
std::vector<TaskDescInfo> task_desc_info;
auto profiling_ret = GetTaskDescInfo(node, model, task_desc_info);
if (profiling_ret != RT_ERROR_NONE) {
GELOGE(profiling_ret, "Get task info of node[%s] failed.", node->GetName().c_str());
GELOGE(profiling_ret, "[Get][TaskDescInfo] of node:%s failed, when %s.", node->GetName().c_str(), __FUNCTION__);
REPORT_CALL_ERROR("E19999", "GetTaskDescInfo of node:%s failed, when %s.", node->GetName().c_str(), __FUNCTION__);
return profiling_ret;
}
@ -202,7 +206,8 @@ Status NodeDoneCallback::ProfilingReport() {
Status NodeDoneCallback::DumpDynamicNode() {
auto node = context_->GetNodeItem().node;
if (node == nullptr) {
GELOGE(PARAM_INVALID, "Get node is nullptr");
GELOGE(PARAM_INVALID, "[Get][Node] value is nullptr when %s.", __FUNCTION__);
REPORT_INNER_ERROR("E19999", "get node is nullptr when %s.", __FUNCTION__);
return PARAM_INVALID;
}
auto op_desc = node->GetOpDesc();
@ -211,13 +216,13 @@ Status NodeDoneCallback::DumpDynamicNode() {
vector<uintptr_t> output_addrs;
for (int i = 0; i < context_->NumInputs(); i++) {
auto tensor_value = context_->GetInput(i);
GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr");
GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "[Get][Tensor] value is nullptr.");
uint64_t input_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData());
input_addrs.emplace_back(input_addr);
}
for (int j = 0; j < context_->NumOutputs(); j++) {
auto tensor_value = context_->GetOutput(j);
GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "Tensor value is nullptr");
GE_CHK_BOOL_RET_STATUS(tensor_value != nullptr, PARAM_INVALID, "[Get][Tensor] value is nullptr.");
uint64_t output_addr = reinterpret_cast<uintptr_t>(tensor_value->GetData());
output_addrs.emplace_back(output_addr);
}
@ -245,11 +250,12 @@ Status NodeDoneCallback::DumpDynamicNode() {
void *global_step = context_->GetExecutionContext()->global_step;
dump_op_.SetLoopAddr(global_step, loop_per_iter, loop_cond);
GE_CHK_STATUS_RET(dump_op_.LaunchDumpOp(), "Failed to launch dump op in hybird model");
GE_CHK_STATUS_RET(dump_op_.LaunchDumpOp(), "[Launch][DumpOp] failed in hybird model when %s.", __FUNCTION__);
auto rt_ret = rtStreamSynchronize(stream);
if (rt_ret != RT_ERROR_NONE) {
GELOGE(rt_ret, "rtStreamSynchronize failed");
GELOGE(rt_ret, "[Call][rtStreamSynchronize] failed when %s.", __FUNCTION__);
REPORT_CALL_ERROR("E19999", "call rtStreamSynchronize failed when %s.", __FUNCTION__);
return rt_ret;
}
return SUCCESS;
@ -264,12 +270,12 @@ Status NodeDoneCallback::OnNodeDone() {
const DumpProperties &dump_properties = context_->GetDumpProperties();
if (dump_properties.IsDumpOpen() || context_->IsOverFlow()) {
GELOGI("Start to dump dynamic shape op");
GE_CHK_STATUS_RET(DumpDynamicNode(), "Failed to dump dynamic node");
GE_CHK_STATUS_RET(DumpDynamicNode(), "[Call][DumpDynamicNode] Failed when %s.", __FUNCTION__);
}
if (ProfilingManager::Instance().ProfilingModelExecuteOn()) {
GE_CHK_STATUS_RET(ProfilingReport(), "Report node[%s] to profiling failed.",
node_item.NodeName().c_str());
GE_CHK_STATUS_RET(ProfilingReport(), "[Report][Profiling] of node[%s] failed when %s.",
node_item.NodeName().c_str(), __FUNCTION__);
}
// release workspace
@ -292,8 +298,7 @@ Status NodeDoneCallback::OnNodeDone() {
}
GE_CHK_STATUS_RET(context_->PropagateOutputs(),
"[%s] Failed to propagate outputs failed",
node_item.NodeName().c_str());
"[Propagate][Outputs] of [%s] failed when %s.", node_item.NodeName().c_str(), __FUNCTION__);
RECORD_CALLBACK_EVENT(graph_context_, context_->GetNodeName(), "[PropagateOutputs] End");
}
@ -333,7 +338,8 @@ Status ExecutionEngine::DoExecuteAsync(NodeState &node_state,
const std::function<void()> &callback) {
const auto &task = node_state.GetKernelTask();
if (task == nullptr) {
GELOGE(INTERNAL_ERROR, "[%s] NodeTask is null.", node_state.GetName().c_str());
GELOGE(INTERNAL_ERROR, "[Get][KernelTask] of [%s] is null when %s.", node_state.GetName().c_str(), __FUNCTION__);
REPORT_CALL_ERROR("E19999", "GetKernelTask of %s is null when %s.", node_state.GetName().c_str(), __FUNCTION__);
return INTERNAL_ERROR;
}
@ -348,8 +354,7 @@ Status ExecutionEngine::DoExecuteAsync(NodeState &node_state,
GE_CHECK_NOTNULL(executor);
RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] Start");
GE_CHK_STATUS_RET(executor->PrepareTask(*task, task_context),
"[%s] Failed to prepare task",
node_state.GetName().c_str());
"[Prepare][Task] for [%s] failed when %s", node_state.GetName().c_str(), __FUNCTION__);
RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PrepareTask] End");
GELOGD("[%s] Done task preparation successfully.", node_state.GetName().c_str());
@ -360,7 +365,8 @@ Status ExecutionEngine::DoExecuteAsync(NodeState &node_state,
}
}
GE_CHK_STATUS_RET(ValidateInputTensors(node_state, task_context), "Failed to validate input tensors.");
GE_CHK_STATUS_RET(ValidateInputTensors(node_state, task_context), "[Validate][InputTensors] for %s failed when %s.",
node_state.GetName().c_str(), __FUNCTION__);
RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[ValidateInputTensors] End");
if (context.profiling_level > 0) {
@ -414,11 +420,10 @@ Status ExecutionEngine::ValidateInputTensors(const NodeState &node_state, const
input_tensor->GetSize());
} else {
GELOGE(INTERNAL_ERROR,
"[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu",
task_context.GetNodeName(),
i,
expected_size,
input_tensor->GetSize());
"[Check][Size] for [%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu when %s.",
task_context.GetNodeName(), i, expected_size, input_tensor->GetSize(), __FUNCTION__);
REPORT_INNER_ERROR("E19999", "[%s] Input[%d]: tensor size mismatches. expected: %ld, but given %zu when %s.",
task_context.GetNodeName(), i, expected_size, input_tensor->GetSize(), __FUNCTION__);
return INTERNAL_ERROR;
}
}
@ -432,8 +437,7 @@ Status ExecutionEngine::PropagateOutputs(const NodeItem &node_item,
GraphExecutionContext &context) {
if (node_item.shape_inference_type != DEPEND_COMPUTE) {
GE_CHK_STATUS_RET(task_context.PropagateOutputs(),
"[%s] Failed to propagate outputs.",
node_item.NodeName().c_str());
"[Propagate][Outputs] for [%s] failed when ExecutionEngine %s.", node_item.NodeName().c_str(), __FUNCTION__);
RECORD_EXECUTION_EVENT(&context, task_context.GetNodeName(), "[PropagateOutputs] End");
GELOGD("[%s] Done propagating outputs successfully.", node_item.NodeName().c_str());
}

@ -70,7 +70,7 @@ Status ShapeInferenceEngine::InferShape(NodeState &node_state) {
{
RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] Start");
GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndTypeForRunning(node_item.node, true),
"Invoke InferShapeAndType failed.");
"[Invoke][InferShapeAndType] for %s failed when %s.", node_item.NodeName().c_str(), __FUNCTION__);
RECORD_SHAPE_INFERENCE_EVENT(execution_context_, node_item.NodeName().c_str(), "[InferShapeAndType] End");
}
@ -172,8 +172,7 @@ Status ShapeInferenceEngine::InferShapeForSubgraph(const NodeItem &node_item, co
GE_CHK_STATUS_RET(ShapeRefiner::InferShapeAndType(node));
GELOGD("[%s] Done invoking InferShapeAndType", node->GetName().c_str());
GE_CHK_STATUS_RET(UpdatePeerNodeShape(*node),
"[%s] Failed to update shapes of peer node.",
node->GetName().c_str());
"[Update][PeerNodeShape] failed for [%s] when %s.", node->GetName().c_str(), __FUNCTION__);
}
for (auto &it : fused_subgraph.output_mapping) {
@ -205,7 +204,10 @@ Status ShapeInferenceEngine::UpdatePeerNodeShape(const Node &node) {
GE_CHECK_NOTNULL(peer_op_desc);
auto peer_input_desc = peer_op_desc->MutableInputDesc(peer_anchor->GetIdx());
if (peer_input_desc == nullptr) {
GELOGE(GRAPH_FAILED, "peer_input_desc is nullptr");
GELOGE(GRAPH_FAILED, "[Call][MutableInputDesc] for %s return nullptr when ShapeInferenceEngine %s.",
peer_op_desc->GetName().c_str(), __FUNCTION__);
REPORT_CALL_ERROR("E19999", "%s call MutableInputDesc return nullptr when ShapeInferenceEngine %s.",
peer_op_desc->GetName().c_str(), __FUNCTION__);
continue;
}
@ -230,8 +232,11 @@ Status ShapeInferenceEngine::CanonicalizeShape(GeTensorDesc &tensor_desc,
const auto &tensor_shape = tensor_desc.MutableShape();
if (tensor_shape.IsUnknownShape()) {
if (!fallback_with_range) {
GELOGE(INTERNAL_ERROR, "Output shape is still unknown after shape inference. shape = [%s]",
tensor_shape.ToString().c_str());
GELOGE(INTERNAL_ERROR,
"[Is][UnknownShape] Output shape is still unknown after shape inference. "
"shape = [%s] when ShapeInferenceEngine %s.", tensor_shape.ToString().c_str(), __FUNCTION__);
REPORT_INNER_ERROR("E19999", "Output shape is still unknown after shape inference. "
"shape = [%s] when ShapeInferenceEngine %s.", tensor_shape.ToString().c_str(), __FUNCTION__);
return INTERNAL_ERROR;
}
@ -239,9 +244,10 @@ Status ShapeInferenceEngine::CanonicalizeShape(GeTensorDesc &tensor_desc,
std::vector<std::pair<int64_t, int64_t>> shape_range;
GE_CHK_GRAPH_STATUS_RET(tensor_desc.GetShapeRange(shape_range), "Failed to get shape range");
if (shape_range.size() != shape.size()) {
GELOGE(INTERNAL_ERROR, "Number of shape ranges (%zu) mismatches that of dims (%zu)",
shape_range.size(),
shape.size());
GELOGE(INTERNAL_ERROR, "[Check][Size] Number of shape ranges (%zu) mismatches that of dims (%zu)"
" when ShapeInferenceEngine %s.", shape_range.size(), shape.size(), __FUNCTION__);
REPORT_INNER_ERROR("E19999", "Number of shape ranges (%zu) mismatches that of dims (%zu)"
" when ShapeInferenceEngine %s.", shape_range.size(), shape.size(), __FUNCTION__);
return INTERNAL_ERROR;
}
@ -265,7 +271,10 @@ Status ShapeInferenceEngine::CalcTensorSize(DataType data_type,
GELOGD("To calc tensor size by shape = [%s]", GeShape(shape).ToString().c_str());
uint32_t type_size;
if (!TypeUtils::GetDataTypeLength(data_type, type_size)) {
GELOGE(INTERNAL_ERROR, "Failed to get data type size");
GELOGE(INTERNAL_ERROR, "[Get][DataTypeLength] failed for type:%s when ShapeInferenceEngine %s.",
TypeUtils::DataTypeToSerialString(data_type).c_str(), __FUNCTION__);
REPORT_CALL_ERROR("E19999", "GetDataTypeLength failed for type:%s when ShapeInferenceEngine %s.",
TypeUtils::DataTypeToSerialString(data_type).c_str(), __FUNCTION__);
return INTERNAL_ERROR;
}
@ -273,15 +282,13 @@ Status ShapeInferenceEngine::CalcTensorSize(DataType data_type,
for (const auto &dim : shape) {
GE_CHECK_GE(dim, 0);
GE_CHK_STATUS_RET(Int64MulCheckOverflow(tensor_size, dim),
"Shape size overflow, shape = [%s]",
GeShape(shape).ToString().c_str());
"[Check][Overflow] Shape size overflow, shape = [%s]", GeShape(shape).ToString().c_str());
tensor_size *= dim;
}
GE_CHK_STATUS_RET(CheckInt64AddOverflow(tensor_size, kAlignment - 1),
"Tensor size is too large: %ld, shape = [%s]",
tensor_size,
GeShape(shape).ToString().c_str());
"[Check][Overflow]Tensor size is too large: %ld, shape = [%s]",
tensor_size, GeShape(shape).ToString().c_str());
tensor_size = (tensor_size + kAlignment - 1) / kAlignment * kAlignment;
return SUCCESS;
}
@ -295,15 +302,13 @@ Status ShapeInferenceEngine::CalcOutputTensorSizes(const NodeItem &node_item, bo
// modify on copy
auto dims = shape.GetDims();
GE_CHK_STATUS_RET(CanonicalizeShape(*tensor_desc, dims, fallback_with_range),
"[%s] Failed to canonicalize shape for output %zu",
node_item.NodeName().c_str(),
output_index);
"[Canonicalize][Shape] failed for [%s], output %zu, when ShapeInferenceEngine %s.",
node_item.NodeName().c_str(), output_index, __FUNCTION__);
int64_t tensor_size;
GE_CHK_STATUS_RET(CalcTensorSize(tensor_desc->GetDataType(), dims, tensor_size),
"[%s] Failed to calc tensor size for output %zu",
node_item.NodeName().c_str(),
output_index);
"[Calc][TensorSize] failed for [%s], output %zu when ShapeInferenceEngine %s.",
node_item.NodeName().c_str(), output_index, __FUNCTION__);
GELOGD("[%s] Tensor size of output %zu = %ld", node_item.NodeName().c_str(), output_index, tensor_size);
(void) TensorUtils::SetSize(*tensor_desc, tensor_size);
}

@ -32,7 +32,8 @@ Status TaskCompileEngine::Compile(NodeState &node_state, GraphExecutionContext *
shared_ptr<NodeTask> kernel_task;
auto ret = node_item.node_executor->CompileTask(*context->model, node_item.node, kernel_task);
RECORD_COMPILE_EVENT(context, node_state.GetName().c_str(), "[Compile] End");
GE_CHK_STATUS_RET(ret, "Failed to create task for node: %s", node_item.NodeName().c_str());
GE_CHK_STATUS_RET(ret, "[Compile][Task] failed for node: %s, when TaskCompileEngine %s.",
node_item.NodeName().c_str(), __FUNCTION__);
node_state.SetKernelTask(kernel_task);
GELOGI("Compiling node %s successfully", node_state.GetName().c_str());
return SUCCESS;

Loading…
Cancel
Save