!1152 fixed sc warning

From: @li-lei0106
Reviewed-by: @ji_chen
Signed-off-by: @ji_chen
pull/1152/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit ef0380f1c2

@ -165,7 +165,7 @@ Status OmFileLoadHelper::LoadModelPartitionTable(uint8_t *model_data, const uint
return ACL_ERROR_GE_PARAM_INVALID;
}
size_t mem_offset = SIZE_OF_MODEL_PARTITION_TABLE(*partition_table);
GELOGD("ModelPartitionTable num :%u, ModelFileHeader length :%zu, ModelPartitionTable length :%zu",
GELOGD("ModelPartitionTable num:%u, ModelFileHeader length:%zu, ModelPartitionTable length:%zu",
partition_table->num, sizeof(ModelFileHeader), mem_offset);
if (model_data_size <= mem_offset) {
GELOGE(ACL_ERROR_GE_EXEC_MODEL_DATA_SIZE_INVALID, "invalid model data, partition_table->num:%u, model data size %u",
@ -207,7 +207,8 @@ Status OmFileLoadHelper::LoadModelPartitionTable(uint8_t *model_data, uint32_t m
"ModelFileHeader length :%zu, ModelPartitionTable length :%zu",
index, partition_table->num, sizeof(ModelFileHeader), partition_table_size);
if (model_data_size <= cur_offset) {
GELOGE(ACL_ERROR_GE_EXEC_MODEL_DATA_SIZE_INVALID, "invalid model data, partition_table->num:%u, model data size %u",
GELOGE(ACL_ERROR_GE_EXEC_MODEL_DATA_SIZE_INVALID,
"invalid model data, partition_table->num:%u, model data size %u",
partition_table->num, model_data_size);
return ACL_ERROR_GE_EXEC_MODEL_DATA_SIZE_INVALID;
}

@ -454,7 +454,8 @@ Status GeExecutor::GetCurDynamicDims(uint32_t model_id, const vector<uint64_t> &
if (all_data_dims[i] < 0) {
cur_dynamic_dims.push_back(dynamic_dims[i]);
} else if (static_cast<uint64_t>(all_data_dims[i]) != dynamic_dims[i]) {
GELOGE(ACL_ERROR_GE_DYNAMIC_INPUT_LENGTH_INVALID, "Static dims should be same, index: %zu value: %lu should be %ld",
GELOGE(ACL_ERROR_GE_DYNAMIC_INPUT_LENGTH_INVALID,
"Static dims should be same, index: %zu value: %lu should be %ld",
i, dynamic_dims[i], all_data_dims[i]);
return ACL_ERROR_GE_DYNAMIC_INPUT_LENGTH_INVALID;
}

@ -1042,7 +1042,7 @@ Status TaskGenerator::InsertProfilingTaskAfter(const OpDescPtr &op_desc, const P
}
GELOGD("Insert bp profiling task: %d, insert end profiling task: %d, fp index: %u, bp index: %u, end index size: %zu",
is_insert_bp_profiling_task, is_insert_end_profiling_task, profiling_point.fp_index, profiling_point.bp_index,
profiling_point.end_index.size() );
profiling_point.end_index.size());
bool is_all_reduce = (op_desc->GetType() == HCOMALLREDUCE || op_desc->GetType() == HVDCALLBACKALLREDUCE);
if ((profiling_point.bp_index == node_index) || (!is_all_reduce && is_insert_bp_profiling_task)) {

@ -94,7 +94,7 @@ const int32_t kModelAbortNormal = 0x0704000e;
const int32_t kModelAbortNormalNew = 507024;
inline bool IsDataOp(const std::string &node_type) {
return node_type == DATA_TYPE || node_type == AIPP_DATA_TYPE || node_type == ANN_DATA_TYPE;
return (node_type == DATA_TYPE) || (node_type == AIPP_DATA_TYPE) || (node_type == ANN_DATA_TYPE);
}
inline bool IsTbeTask(const OpDescPtr &op_desc) {
@ -187,12 +187,12 @@ DavinciModel::~DavinciModel() {
UnbindTaskSinkStream();
for (size_t i = 0; i < label_list_.size(); ++i) {
if (label_list_[i] != nullptr) {
GE_LOGW_IF(rtLabelDestroy(label_list_[i]) != RT_ERROR_NONE, "Destroy label failed, index: %zu", i);
GE_LOGW_IF(rtLabelDestroy(label_list_[i]) != RT_ERROR_NONE, "Destroy label failed, index:%zu", i);
}
}
for (size_t i = 0; i < stream_list_.size(); ++i) {
GE_LOGW_IF(rtStreamDestroy(stream_list_[i]) != RT_ERROR_NONE, "Destroy stream failed, index: %zu", i);
GE_LOGW_IF(rtStreamDestroy(stream_list_[i]) != RT_ERROR_NONE, "Destroy stream failed, index:%zu", i);
}
for (size_t i = 0; i < event_list_.size(); ++i) {
@ -337,7 +337,7 @@ Status DavinciModel::InitWeightMem(void *dev_ptr, void *weight_ptr, size_t weigh
Status DavinciModel::InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size) {
if (is_feature_map_mem_has_inited_) {
GELOGE(PARAM_INVALID, "call InitFeatureMapMem more than once.");
GELOGE(PARAM_INVALID, "call InitFeatureMapMem more than once");
return PARAM_INVALID;
}
is_feature_map_mem_has_inited_ = true;
@ -381,7 +381,7 @@ Status DavinciModel::InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size) {
is_inner_p2p_mem_base_ = true;
}
GE_CHK_STATUS_RET(InitVariableMem(), "Init variable memory failed.");
GE_CHK_STATUS_RET(InitVariableMem(), "Init variable memory failed");
runtime_param_.mem_base = mem_base_;
runtime_param_.weight_base = weights_mem_base_;
runtime_param_.memory_infos[RT_MEMORY_P2P_DDR].memory_base = p2p_mem_base_;
@ -391,7 +391,7 @@ Status DavinciModel::InitFeatureMapAndP2PMem(void *dev_ptr, size_t mem_size) {
Status DavinciModel::InitVariableMem() {
// malloc variable memory base
var_mem_base_ = VarManager::Instance(session_id_)->GetVarMemoryBase(RT_MEMORY_HBM);
if (TotalVarMemSize() && var_mem_base_ == nullptr) {
if (TotalVarMemSize() && (var_mem_base_ == nullptr)) {
Status ret = VarManager::Instance(session_id_)->MallocVarMemory(TotalVarMemSize());
if (ret != SUCCESS) {
GELOGE(ret, "Malloc variable memory failed.");
@ -500,25 +500,25 @@ Status DavinciModel::DoTaskSink() {
}
GE_CHK_RT_RET(rtGetAicpuDeploy(&deploy_type_));
GELOGI("do task_sink. AiCpu deploy type is: %x.", deploy_type_);
GELOGI("do task_sink. AiCpu deploy type is: %x", deploy_type_);
GE_CHK_STATUS_RET(BindModelStream(), "Bind model stream failed.");
if (known_node_) {
GE_CHK_STATUS_RET(MallocKnownArgs(), "Mallloc known node args failed.");
GE_CHK_STATUS_RET(MallocKnownArgs(), "Mallloc known node args failed");
}
GE_CHK_STATUS_RET(InitTaskInfo(*model_task_def.get()), "InitTaskInfo failed.");
GE_CHK_STATUS_RET(InitTaskInfo(*model_task_def.get()), "InitTaskInfo failed");
GE_CHK_STATUS_RET(ModelManager::GetInstance()->LaunchCustAicpuSo(), "Launch cust aicpu so failed.");
GE_CHK_STATUS_RET(ModelManager::GetInstance()->LaunchCustAicpuSo(), "Launch cust aicpu so failed");
GE_CHK_STATUS_RET(ModelManager::GetInstance()->CheckAicpuOpList(ge_model_), "Check aicpu op type failed.");
GE_CHK_STATUS_RET(ModelManager::GetInstance()->CheckAicpuOpList(ge_model_), "Check aicpu op type failed");
GE_CHK_STATUS_RET(InitEntryTask(), "InitEntryTask failed.");
GE_CHK_STATUS_RET(InitEntryTask(), "InitEntryTask failed");
GE_CHK_STATUS_RET(InitL1DataDumperArgs(), "InitL1DataDumperArgs failed.");
GE_CHK_STATUS_RET(InitL1DataDumperArgs(), "InitL1DataDumperArgs failed");
GE_CHK_STATUS_RET(DistributeTask(), "Distribute failed.");
GE_CHK_STATUS_RET(DistributeTask(), "Distribute failed");
GE_CHK_RT_RET(rtModelLoadComplete(rt_model_handle_));
@ -3332,7 +3332,7 @@ Status DavinciModel::CopyModelData(const InputData &input_data, OutputData &outp
///
Status DavinciModel::UpdateIoTaskArgs(const std::map<uint32_t, ZeroCopyOffset> &data_info, bool is_input,
const vector<DataBuffer> &blobs, bool is_dynamic, const string &batch_label) {
string input_or_output = "input";
string input_or_output;
is_input ? input_or_output = "input" : input_or_output = "output";
if (blobs.size() != data_info.size()) {
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Verify %s data num failed: model requires %zu, but user actually feeds %zu",
@ -3342,7 +3342,8 @@ Status DavinciModel::UpdateIoTaskArgs(const std::map<uint32_t, ZeroCopyOffset> &
for (const auto &data : data_info) {
if (data.first >= blobs.size()) { // check data index.
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "Verify %s data num failed: can not find No.%u data, because user only feeds %zu",
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
"Verify %s data num failed: can not find No.%u data, because user only feeds %zu",
input_or_output.c_str(), data.first, blobs.size());
return ACL_ERROR_GE_PARAM_INVALID;
}

@ -2254,8 +2254,7 @@ Status GraphManager::OptimizeStage2(ge::ComputeGraphPtr &compute_graph) {
GE_CHK_STATUS_RET(after_merge_passes.AddPass("OptimizeStage2::AfterMergePasses::LinkGenMaskNodesPass",
new (std::nothrow)
LinkGenMaskNodesPass(options_.stream_max_parallel_num)));
GE_CHK_STATUS_RET(
after_merge_passes.AddPass("OptimizeStage2::HcclContinuousMemcpyPass",
GE_CHK_STATUS_RET(after_merge_passes.AddPass("OptimizeStage2::HcclContinuousMemcpyPass",
new (std::nothrow) HcclContinuousMemcpyPass));
GE_TIMESTAMP_START(after_merge_passes);

@ -26,6 +26,7 @@
#include "framework/common/debug/ge_log.h"
#include "framework/common/ge_inner_error_codes.h"
#include "graph/manager/host_mem_allocator.h"
#include "graph/node.h"
#include "runtime/mem.h"
@ -139,7 +140,6 @@ class MemoryAllocator {
using MemoryAllocatorPtr = std::shared_ptr<MemoryAllocator>;
class CachingAllocator;
class RdmaPoolAllocator;
class HostMemAllocator;
class MemManager {
public:
MemManager();

@ -24,7 +24,7 @@ namespace {
constexpr uint32_t kValidInputNodeOutputNum = 1;
constexpr int32_t kAssignRefInputIndex = 0;
constexpr int32_t kAssignValueInputIndex = 1;
static const std::set<std::string> kNoTaskNodeTypes = { ge::DATA, ge::ANN_DATA, ge::AIPPDATA,
const std::set<std::string> kNoTaskNodeTypes = { ge::DATA, ge::ANN_DATA, ge::AIPPDATA,
ge::CONSTANT, ge::CONSTANTOP,
ge::VARIABLE, ge::VARIABLEV2 };
}

@ -50,13 +50,11 @@ Status RunOpKernelWithCheck(NodePtr &node,
return FoldingPass::RunOpKernel(node, inputs, outputs);
}
const std::map<std::string, std::pair<std::uint64_t, uint64_t>>
&ConstantFoldingPass::GetGeConstantFoldingPerfStatistic() const {
const map<string, pair<uint64_t, uint64_t>> &ConstantFoldingPass::GetGeConstantFoldingPerfStatistic() const {
return statistic_of_ge_constant_folding_;
}
const std::map<std::string, std::pair<std::uint64_t, uint64_t>>
&ConstantFoldingPass::GetOpConstantFoldingPerfStatistic() const {
const map<string, pair<uint64_t, uint64_t>> &ConstantFoldingPass::GetOpConstantFoldingPerfStatistic() const {
return statistic_of_op_constant_folding_;
}

@ -140,7 +140,8 @@ bool HcclContinuousMemcpyPass::IsDataNode(const std::string& node_type) {
/// @param [in] ge::OutDataAnchorPtr in_node
/// @return ge::NodePtr
///
NodePtr HcclContinuousMemcpyPass::CreateIdentityNode(const ComputeGraphPtr &graph, const OutDataAnchorPtr &out_data_anchor) {
NodePtr HcclContinuousMemcpyPass::CreateIdentityNode(const ComputeGraphPtr &graph,
const OutDataAnchorPtr &out_data_anchor) {
GE_CHECK_NOTNULL_EXEC(graph, return nullptr);
NodePtr pre_node = out_data_anchor->GetOwnerNode();
OpDescPtr pre_op_desc = pre_node->GetOpDesc();
@ -205,7 +206,8 @@ std::string HcclContinuousMemcpyPass::CheckDuplicateName(const std::string &node
/// @param [in] InDataAnchorPtr hccl_in_anchor
/// @return status
///
Status HcclContinuousMemcpyPass::ModifyEdgeConnection(const ComputeGraphPtr &graph, const OutDataAnchorPtr &src_out_anchor,
Status HcclContinuousMemcpyPass::ModifyEdgeConnection(const ComputeGraphPtr &graph,
const OutDataAnchorPtr &src_out_anchor,
const InDataAnchorPtr &hccl_in_anchor) {
GE_CHECK_NOTNULL(src_out_anchor->GetOwnerNode());
GE_CHECK_NOTNULL(hccl_in_anchor->GetOwnerNode());
@ -235,7 +237,8 @@ Status HcclContinuousMemcpyPass::ModifyEdgeConnection(const ComputeGraphPtr &gra
/// @param [in] InDataAnchorPtr hccl_in_anchor
/// @return status
///
Status HcclContinuousMemcpyPass::InsertIdentityBeforeHccl(const ComputeGraphPtr &graph, const OutDataAnchorPtr &src_out_anchor,
Status HcclContinuousMemcpyPass::InsertIdentityBeforeHccl(const ComputeGraphPtr &graph,
const OutDataAnchorPtr &src_out_anchor,
const InDataAnchorPtr &hccl_in_anchor) {
GELOGI("Between op %s and op %s need insert memcpy async op.", src_out_anchor->GetOwnerNode()->GetName().c_str(),
hccl_in_anchor->GetOwnerNode()->GetName().c_str());
@ -354,8 +357,9 @@ Status HcclContinuousMemcpyPass::InsertAssignAfterBroadcastIfNeed(const ComputeG
/// @param [in] ge::OutDataAnchorPtr variable node out anchor
/// @return ge::NodePtr
///
NodePtr HcclContinuousMemcpyPass::CreateAssignNode(const ComputeGraphPtr &graph, const OutDataAnchorPtr &out_data_anchor) {
GE_CHECK_NOTNULL_EXEC(graph , return nullptr);
NodePtr HcclContinuousMemcpyPass::CreateAssignNode(const ComputeGraphPtr &graph,
const OutDataAnchorPtr &out_data_anchor) {
GE_CHECK_NOTNULL_EXEC(graph, return nullptr);
NodePtr pre_node = out_data_anchor->GetOwnerNode();
OpDescPtr pre_op_desc = pre_node->GetOpDesc();
if (pre_op_desc == nullptr) {

@ -23,7 +23,7 @@ namespace ge {
namespace {
constexpr uint32_t kInplaceSupportOutputIndex = 0;
constexpr uint32_t kInplaceSupportOutputNum = 1;
static const std::set<std::string> kSrcNodeTypes = { ge::DATA, ge::ANN_DATA, ge::AIPPDATA,
const std::set<std::string> kSrcNodeTypes = { ge::DATA, ge::ANN_DATA, ge::AIPPDATA,
ge::CONSTANT, ge::CONSTANTOP,
ge::VARIABLE, ge::VARIABLEV2 };
}

@ -43,7 +43,7 @@ Status ReshapeRemovePass::Run(NodePtr &node) {
GE_CHECK_NOTNULL(node);
GE_CHECK_NOTNULL(node->GetOpDesc());
int key = kToBeDeleteOp.find(node->GetType()) == kToBeDeleteOp.end() ? kOpNoDelete : kToBeDeleteOp[node->GetType()];
switch(key) {
switch (key) {
case kReshapeType: {
bool is_shape_unknown = false;
if (NodeUtils::GetNodeUnknownShapeStatus(*node, is_shape_unknown) == GRAPH_SUCCESS) {

@ -385,7 +385,7 @@ Status SubgraphConstMigrationPass::DetachParallelNode(const ComputeGraphPtr &gra
// Break Move and follow, Link Data and follow.
const auto &out_anchor = const_node->GetOutDataAnchor(kZeroIndex);
const auto in_anchors =out_anchor->GetPeerInDataAnchors();
const auto in_anchors = out_anchor->GetPeerInDataAnchors();
for (const auto in_anchor : in_anchors) {
GE_CHK_GRAPH_STATUS_RET(GraphUtils::RemoveEdge(out_anchor, in_anchor), "Remove edge failed");
GELOGI("Remove Edge: %s %s", const_node->GetName().c_str(), in_anchor->GetOwnerNode()->GetName().c_str());

@ -991,7 +991,6 @@ Status ParseDynamicInputShapeRange(const std::string &shape_range,
Status GetDynamicInputShapeRange(const std::vector<GeTensor> &user_input, const std::map<string, string> &graph_option,
vector<vector<std::pair<int64_t, int64_t>>> &range_vec) {
// check both mode and shape_range option are all enabled
auto mode_iter = graph_option.find(OPTION_EXEC_DYNAMIC_EXECUTE_MODE);
bool enable_dynamic_execute_mode = (mode_iter != graph_option.end()) && (mode_iter->second == "dynamic_execute");
if (!enable_dynamic_execute_mode) {
@ -1272,9 +1271,10 @@ Status GraphPrepare::AdjustDataOpOutput(const NodePtr &node) {
return SUCCESS;
}
Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input, const std::map<string,string> &graph_option) {
Status GraphPrepare::UpdateInput(const std::vector<GeTensor> &user_input,
const std::map<string, string> &graph_option) {
// Get shape range of input in dynamic_execute mode
vector<vector<std::pair<int64_t,int64_t>>> dynamic_shape_range_vec;
vector<vector<std::pair<int64_t, int64_t>>> dynamic_shape_range_vec;
auto ret = GetDynamicInputShapeRange(user_input, graph_option, dynamic_shape_range_vec);
GE_CHK_STATUS_RET(ret, "Graph option is not right on Dynamic execute mode.");
compute_graph_->SaveDataFormat(ge::TypeUtils::DomiFormatToFormat(GetLocalOmgContext().format));
@ -2012,7 +2012,8 @@ Status GraphPrepare::ProcessNetOutput() {
return SUCCESS;
}
Status GraphPrepare::CheckAndUpdateInput(const std::vector<GeTensor> &user_input,const std::map<string,string> &graph_option) {
Status GraphPrepare::CheckAndUpdateInput(const std::vector<GeTensor> &user_input,
const std::map<string, string> &graph_option) {
compute_graph_->SetInputSize(user_input.size());
if (user_input.empty()) {
return SUCCESS;

@ -63,8 +63,8 @@ class GraphPrepare {
Status CheckRefOp();
Status SetRtContext(rtContext_t rt_context, rtCtxMode_t mode);
Status AdjustDataOpOutput(const NodePtr &node);
Status UpdateInput(const std::vector<GeTensor> &user_input, const std::map<string,string> &graph_option);
Status CheckAndUpdateInput(const std::vector<GeTensor> &user_input, const std::map<string,string> &graph_option);
Status UpdateInput(const std::vector<GeTensor> &user_input, const std::map<string, string> &graph_option);
Status CheckAndUpdateInput(const std::vector<GeTensor> &user_input, const std::map<string, string> &graph_option);
Status CheckConstOp();
Status VerifyConstOp(const NodePtr &node);
Status CheckUserInput(const std::vector<GeTensor> &user_input);

@ -62,9 +62,9 @@ struct GraphExecutionContext {
rtStream_t stream = nullptr;
rtContext_t rt_context = nullptr;
rtContext_t rt_gen_context = nullptr;
std::unique_ptr<CallbackManager> callback_manager;
std::unique_ptr<CallbackManager> callback_manager = nullptr;
NpuMemoryAllocator *allocator = nullptr;
mutable std::unique_ptr<HybridProfiler> profiler;
mutable std::unique_ptr<HybridProfiler> profiler = nullptr;
DumpProperties dump_properties;
bool trace_enabled = false;
bool dump_enabled = false;

@ -520,7 +520,7 @@ Status TaskContext::SaveProfilingTaskDescInfo(uint32_t task_id, uint32_t stream
const NodeItem &node_item = GetNodeItem();
auto op_desc = node_item.GetOpDesc();
GE_CHECK_NOTNULL(op_desc);
const GraphExecutionContext * graph_context = GetExecutionContext();
const GraphExecutionContext *graph_context = GetExecutionContext();
GE_CHECK_NOTNULL(graph_context);
const HybridModel *model = graph_context->model;
GE_CHECK_NOTNULL(model);
@ -551,7 +551,7 @@ Status TaskContext::SaveProfilingGraphDescInfo(uint32_t task_id, uint32_t stream
const NodeItem &node_item = GetNodeItem();
auto op_desc = node_item.GetOpDesc();
GE_CHECK_NOTNULL(op_desc);
const GraphExecutionContext * graph_context = GetExecutionContext();
const GraphExecutionContext *graph_context = GetExecutionContext();
GE_CHECK_NOTNULL(graph_context);
const HybridModel *model = graph_context->model;
GE_CHECK_NOTNULL(model);

@ -62,19 +62,18 @@ using std::shared_ptr;
using std::string;
using std::vector;
namespace {
static bool is_dynamic_input = false;
const char *const kModeSupport = "only support 0(model to framework model), "
"1(framework model to json), 3(only pre-check), "
"5(pbtxt to json), 6(display model info)";
const char *const kModelToJsonSupport = "only support 0(Caffe) 3(TensorFlow) 5(Onnx)";
static const char *const kCaffeFormatSupport = "only support NCHW, ND in Caffe model";
static const char *const kTFFormatSupport = "only support NCHW, NHWC, ND, NCDHW, NDHWC in TF model";
static const char *const kONNXFormatSupport = "only support NCHW, ND in ONNX model";
const char *const kCaffeFormatSupport = "only support NCHW, ND in Caffe model";
const char *const kTFFormatSupport = "only support NCHW, NHWC, ND, NCDHW, NDHWC in TF model";
const char *const kONNXFormatSupport = "only support NCHW, ND in ONNX model";
// limit available mem size 2G
const long kMinAvailableMem = 2097152; // 2 * 1024 * 1024
} // namespace
DEFINE_string(model, "", "The model file.");
DEFINE_string(output, "", "The output file path&name.");

@ -965,7 +965,8 @@ FMK_FUNC_HOST_VISIBILITY Status ConvertOm(const char *model_file, const char *js
} else {
ErrorManager::GetInstance().ATCReportErrMessage("E10003",
{"parameter", "value", "reason"}, {"om", model_file, "invalid om file"});
GELOGE(ACL_ERROR_GE_PARAM_INVALID, "ParseModelContent failed because of invalid om file. Please check --om param.");
GELOGE(ACL_ERROR_GE_PARAM_INVALID,
"ParseModelContent failed because of invalid om file. Please check --om param.");
}
if (model.model_data != nullptr) {

@ -385,7 +385,8 @@ Status AiCpuBaseTask::SetExtInfoAndType(const std::string &kernel_ext_info, uint
num_inputs_,
num_outputs_,
unknown_type_));
GE_CHK_BOOL_RET_STATUS(aicpu_ext_handle_ != nullptr, ACL_ERROR_GE_MEMORY_ALLOCATION, "Malloc aicpu_ext_handle mem failed!");
GE_CHK_BOOL_RET_STATUS(aicpu_ext_handle_ != nullptr, ACL_ERROR_GE_MEMORY_ALLOCATION,
"Malloc aicpu_ext_handle mem failed!");
Status ret = aicpu_ext_handle_->Parse(kernel_ext_info);
if (ret != SUCCESS) {

@ -55,7 +55,8 @@ typedef void *OpTensor_t;
/// @return 0 for success / others for fail
///
GE_FUNC_VISIBILITY extern Status_t OpTaskGernerator(const char *op_type, const OpTensor_t *in_tensor, int in_num,
const OpTensor_t *out_tensor, int out_num, const OpAttr_t attr, const char *om_file);
const OpTensor_t *out_tensor, int out_num, const OpAttr_t attr,
const char *om_file);
///
/// @ingroup ge

@ -52,7 +52,8 @@ GE_FUNC_VISIBILITY Status InitRdmaPool(size_t size, rtMemType_t mem_type = RT_ME
/// \param var_info [in] host variable addr infos.
/// \param mem_type [in] memory type for rdma pool.
/// \return Status result of function
GE_FUNC_VISIBILITY Status RdmaRemoteRegister(const std::vector<HostVarInfo> &var_info, rtMemType_t mem_type = RT_MEMORY_HBM);
GE_FUNC_VISIBILITY Status RdmaRemoteRegister(const std::vector<HostVarInfo> &var_info,
rtMemType_t mem_type = RT_MEMORY_HBM);
///
/// \param tensor_info [in] description for tensor stored shared memory.

Loading…
Cancel
Save