You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
graphengine/ge/host_kernels/floordiv_kernel.cc

288 lines
11 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "host_kernels/floordiv_kernel.h"
#include <cfloat>
#include <memory>
#include <set>
#include "common/op/ge_op_utils.h"
#include "common/types.h"
#include "framework/common/debug/ge_log.h"
#include "host_kernels/kernel_utils.h"
#include "graph/utils/type_utils.h"
#include "inc/kernel_factory.h"
namespace ge {
namespace {
const size_t kFloorDivInputX = 0;
const size_t kFloorDivInputY = 1;
const size_t kFloorDivTensorShapeIsEmpty = 0;
const size_t kFloorDivInputSize = 2;
const std::set<DataType> kFloorDivSupportedType = {DT_FLOAT, DT_DOUBLE, DT_UINT8, DT_INT8,
DT_UINT16, DT_INT16, DT_INT32, DT_INT64};
} // namespace
Status FloorDivKernel::FloorDivCheck(const OpDescPtr &op_desc_ptr,
const std::vector<ge::ConstGeTensorPtr> &input) const {
// check input size
if (op_desc_ptr == nullptr) {
GELOGW("Input opdesc is nullptr.");
return PARAM_INVALID;
}
if (input.size() != kFloorDivInputSize) {
GELOGW("Unexpected FloorDiv node, node input size: %zu, node name: %s", input.size(),
op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
// check dims of x and y
ConstGeTensorPtr x_tensor = input.at(kFloorDivInputX);
ConstGeTensorPtr y_tensor = input.at(kFloorDivInputY);
GE_CHECK_NOTNULL(x_tensor);
GE_CHECK_NOTNULL(y_tensor);
if (x_tensor->GetTensorDesc().GetShape().GetDimNum() != kFloorDivTensorShapeIsEmpty &&
y_tensor->GetTensorDesc().GetShape().GetDimNum() != kFloorDivTensorShapeIsEmpty) {
// x and y are not scalars
vector<int64_t> x_dims = x_tensor->GetTensorDesc().GetShape().GetDims();
vector<int64_t> y_dims = y_tensor->GetTensorDesc().GetShape().GetDims();
if (x_dims.size() != y_dims.size()) {
GELOGW("FloorDivKernel dims of x and y do not match, node name: %s", op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
} else {
for (size_t i = 0; i < x_dims.size(); ++i) {
if (x_dims[i] != y_dims[i]) {
GELOGW("FloorDivKernel dims of x and y do not match, node name: %s", op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
}
}
}
// check data type
DataType x_data_dtype = x_tensor->GetTensorDesc().GetDataType();
DataType y_data_dtype = y_tensor->GetTensorDesc().GetDataType();
if (x_data_dtype != y_data_dtype) {
GELOGW("FloorDivKernel data type of x and y do not match, x data type is %s, but y data type is %s, node name: %s.",
TypeUtils::DataTypeToSerialString(x_data_dtype).c_str(),
TypeUtils::DataTypeToSerialString(y_data_dtype).c_str(), op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
if (kFloorDivSupportedType.find(x_data_dtype) == kFloorDivSupportedType.end()) {
GELOGW("FloorDivKernel data type %s not support, node name: %s",
TypeUtils::DataTypeToSerialString(x_data_dtype).c_str(), op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
// check data
if (x_tensor->GetData().size() == 0 || y_tensor->GetData().size() == 0) {
GELOGW("FloorDivKernel data size of inputs is 0, node name: %s", op_desc_ptr->GetName().c_str());
return PARAM_INVALID;
}
return SUCCESS;
}
void FloorDivKernel::ShapeCal(const std::vector<ge::ConstGeTensorPtr> &input, GeTensorPtr output_ptr) {
vector<int64_t> output_dims;
size_t x_dim = input.at(kFloorDivInputX)->GetTensorDesc().GetShape().GetDimNum();
size_t y_dim = input.at(kFloorDivInputY)->GetTensorDesc().GetShape().GetDimNum();
if (x_dim >= y_dim) {
output_dims = input.at(kFloorDivInputX)->GetTensorDesc().GetShape().GetDims();
} else {
output_dims = input.at(kFloorDivInputY)->GetTensorDesc().GetShape().GetDims();
}
output_ptr->MutableTensorDesc().SetShape(GeShape(output_dims));
}
template <typename T>
T FloorDivKernel::DivCal(const T &x_i, const T &y_i) {
if ((x_i < static_cast<T>(0)) != (y_i < static_cast<T>(0))) {
T abs_x_i = x_i < 0 ? -x_i : x_i;
T abs_y_i = y_i < 0 ? -y_i : y_i;
return static_cast<T>(static_cast<int32_t>(-(abs_x_i + abs_y_i - 1) / abs_y_i));
} else {
return static_cast<T>(static_cast<int32_t>(x_i / y_i));
}
}
template <typename T>
bool FloorDivKernel::ZeroCheck(const T &element, DataType data_type) {
bool result = false;
if (data_type == DT_UINT8 || data_type == DT_INT8 || data_type == DT_UINT16 || data_type == DT_INT16 ||
data_type == DT_INT32 || data_type == DT_INT64) {
result = (element == 0);
} else if (data_type == DT_FLOAT) {
result = (fabs(element) < FLT_EPSILON);
} else if (data_type == DT_DOUBLE) {
result = (fabs(element) < DBL_EPSILON);
}
return result;
}
template <typename T>
Status FloorDivKernel::DataCalBroadcast(const T &x, const T &y, size_t num_x, size_t num_y, DataType data_type,
GeTensorPtr output_ptr) {
size_t data_num = (num_x > num_y) ? num_x : num_y;
unique_ptr<T[]> buf(new (std::nothrow) T[data_num]());
if (buf == nullptr) {
GELOGE(MEMALLOC_FAILED, "new buf failed");
return INTERNAL_ERROR;
}
if (num_x > num_y) {
if (ZeroCheck<T>(y, data_type)) {
GELOGE(PARAM_INVALID, "The divisor of FloorDiv can not be zero.");
return PARAM_INVALID;
}
for (size_t i = 0; i < num_x; ++i) {
buf[i] = DivCal<T>((&x)[i], y);
}
} else {
for (size_t i = 0; i < num_y; ++i) {
if (ZeroCheck<T>((&y)[i], data_type)) {
GELOGE(PARAM_INVALID, "The divisor of FloorDiv can not be zero.");
return PARAM_INVALID;
}
buf[i] = DivCal<T>(x, (&y)[i]);
}
}
if (output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()), data_num * sizeof(T)) != GRAPH_SUCCESS) {
GELOGE(PARAM_INVALID, "set data failed");
return PARAM_INVALID;
}
return SUCCESS;
}
template <typename T>
Status FloorDivKernel::DataCal(const std::vector<ConstGeTensorPtr> &input, GeTensorPtr output_ptr) {
ConstGeTensorPtr x_tensor = input.at(kFloorDivInputX);
ConstGeTensorPtr y_tensor = input.at(kFloorDivInputY);
GE_CHECK_NOTNULL(x_tensor);
GE_CHECK_NOTNULL(y_tensor);
T *x = const_cast<T *>(reinterpret_cast<const T *>(x_tensor->GetData().GetData()));
T *y = const_cast<T *>(reinterpret_cast<const T *>(y_tensor->GetData().GetData()));
if (x == nullptr || y == nullptr) {
GELOGE(PARAM_INVALID, "Input tensor is nullptr.");
return PARAM_INVALID;
}
size_t data_num_x = x_tensor->GetData().size() / sizeof(T);
size_t data_num_y = y_tensor->GetData().size() / sizeof(T);
DataType data_type = x_tensor->GetTensorDesc().GetDataType();
if (x_tensor->GetTensorDesc().GetShape().GetDimNum() == y_tensor->GetTensorDesc().GetShape().GetDimNum()) {
// x and y are both scalars or vector, no need broadcast
unique_ptr<T[]> buf(new (std::nothrow) T[data_num_x]());
if (buf == nullptr) {
GELOGE(MEMALLOC_FAILED, "new buf failed");
return INTERNAL_ERROR;
}
for (size_t i = 0; i < data_num_x; ++i) {
if (ZeroCheck<T>(y[i], data_type)) {
GELOGE(PARAM_INVALID, "The divisor of FloorDiv can not be zero.");
return PARAM_INVALID;
}
buf[i] = DivCal<T>(x[i], y[i]);
}
if (output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()), data_num_x * sizeof(T)) != GRAPH_SUCCESS) {
GELOGE(PARAM_INVALID, "set data failed");
return PARAM_INVALID;
}
} else {
// x-y is vector-scalar, need broadcast
if (DataCalBroadcast<T>(*x, *y, data_num_x, data_num_y, data_type, output_ptr) != SUCCESS) {
return PARAM_INVALID;
}
}
return SUCCESS;
}
Status FloorDivKernel::ComputeByDataType(DataType data_type, const std::vector<ConstGeTensorPtr> &input,
GeTensorPtr output_ptr) {
Status ret;
switch (data_type) {
case DT_FLOAT:
ret = DataCal<float>(input, output_ptr);
break;
case DT_DOUBLE:
ret = DataCal<double>(input, output_ptr);
break;
case DT_UINT8:
ret = DataCal<uint8_t>(input, output_ptr);
break;
case DT_INT8:
ret = DataCal<int8_t>(input, output_ptr);
break;
case DT_UINT16:
ret = DataCal<uint16_t>(input, output_ptr);
break;
case DT_INT16:
ret = DataCal<int16_t>(input, output_ptr);
break;
case DT_INT32:
ret = DataCal<int32_t>(input, output_ptr);
break;
case DT_INT64:
ret = DataCal<int64_t>(input, output_ptr);
break;
default:
GELOGW("FloorDivKernel does not support Data type:%s", TypeUtils::DataTypeToSerialString(data_type).c_str());
return NOT_CHANGED;
}
return ret;
}
Status FloorDivKernel::Compute(const OpDescPtr op_desc_ptr, const std::vector<ConstGeTensorPtr> &input,
std::vector<GeTensorPtr> &v_output) {
GELOGI("FloorDivKernel in");
if (FloorDivCheck(op_desc_ptr, input) != SUCCESS) {
GELOGW("FloorDivKernel input is invalid, failed to fold node.");
return NOT_CHANGED;
}
// Index 0 can always gets a GeTensorDesc object from any OpDescPtr.
auto output_tensor_desc = op_desc_ptr->GetOutputDesc(0);
GeTensorPtr output_ptr = MakeShared<GeTensor>(output_tensor_desc);
if (output_ptr == nullptr) {
GELOGW("make_shared ge::GeTensor failed, node name %s.", op_desc_ptr->GetName().c_str());
return NOT_CHANGED;
}
// calculate shape
ShapeCal(input, output_ptr);
// calculate data and data type
DataType x_data_dtype = input.at(kFloorDivInputX)->GetTensorDesc().GetDataType();
output_ptr->MutableTensorDesc().SetDataType(x_data_dtype);
if (ComputeByDataType(x_data_dtype, input, output_ptr) != SUCCESS) {
return NOT_CHANGED;
}
// print output tensor information, and will be deleted
GELOGD("FloorDiv op %s output tensor data size is %zu", op_desc_ptr->GetName().c_str(), output_ptr->GetData().size());
vector<int64_t> data_dims = output_ptr->GetTensorDesc().GetShape().GetDims();
GELOGD("FloorDiv op %s output tensor dim size is %zu", op_desc_ptr->GetName().c_str(), data_dims.size());
v_output.emplace_back(output_ptr);
GELOGI("FloorDivKernel success.");
return SUCCESS;
}
REGISTER_KERNEL(FLOORDIV, FloorDivKernel);
} // namespace ge