You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
315 lines
11 KiB
315 lines
11 KiB
4 years ago
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import mindspore.context as context
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.ops import operations as P
|
||
|
|
||
|
|
||
|
class SquaredDifference(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(SquaredDifference, self).__init__()
|
||
|
self.squaredDiff = P.SquaredDifference()
|
||
|
|
||
|
def construct(self, x, y):
|
||
|
return self.squaredDiff(x, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_nobroadcast_f16():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.uniform(10, 20, (3, 4, 5, 2)).astype(np.float16)
|
||
|
input_y = np.random.uniform(40, 50, (3, 4, 5, 2)).astype(np.float16)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
assert np.all(output == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_nobroadcast_f32():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(3, 4, 5, 2).astype(np.float32)
|
||
|
input_y = np.random.rand(3, 4, 5, 2).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
assert np.all(output == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_nobroadcast_int32():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(3, 4, 5, 2).astype(np.int32)
|
||
|
input_y = np.random.rand(3, 4, 5, 2).astype(np.int32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
assert np.all(output == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_int32():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
|
||
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.int32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
assert np.all(output == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_f32():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.float32)
|
||
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
assert np.all(output == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_f16():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.float16)
|
||
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float16)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
assert np.all(output == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_bool():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.bool)
|
||
|
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
|
||
|
double_check = np.abs(output-expect)/expect
|
||
|
assert np.all(double_check < error)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_nobroadcast_bool():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(3, 4, 5, 2).astype(np.bool)
|
||
|
input_y = np.random.rand(3, 4, 5, 2).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
|
||
|
double_check = np.abs(output-expect)/expect
|
||
|
assert np.all(double_check < error)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_int32_f16():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
|
||
|
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float16)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
|
||
|
double_check = np.abs(output-expect)/expect
|
||
|
assert np.all(double_check < error)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_int32_f32():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
|
||
|
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
|
||
|
double_check = np.abs(output-expect)/expect
|
||
|
assert np.all(double_check < error)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_nobroadcast_int32_f16():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(2, 4, 3, 2).astype(np.int32)
|
||
|
input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float16)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
|
||
|
double_check = np.abs(output-expect)/expect
|
||
|
assert np.all(double_check < error)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_nobroadcast_int32_f32():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(2, 4, 3, 2).astype(np.int32)
|
||
|
input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
|
||
|
double_check = np.abs(output-expect)/expect
|
||
|
assert np.all(double_check < error)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_f32_scalar_tensor():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(2).astype(np.float32)
|
||
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
assert np.all(output == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_f32_tensor_tensor():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(1, 2).astype(np.float32)
|
||
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
assert np.all(output == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_f32_tensor_tensor_dim_over_7():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(1, 2).astype(np.float32)
|
||
|
input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2, 1).astype(np.float32)
|
||
|
try:
|
||
|
net(Tensor(input_x), Tensor(input_y))
|
||
|
except RuntimeError:
|
||
|
assert True
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_f32_tensor_tensor_cannot_brocast():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.rand(5, 3).astype(np.float32)
|
||
|
input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2).astype(np.float32)
|
||
|
try:
|
||
|
net(Tensor(input_x), Tensor(input_y))
|
||
|
except ValueError:
|
||
|
assert True
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_int_f32_precision():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.randint(20, 30, (1, 2)).astype(np.int32)
|
||
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||
|
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
|
||
|
diff = input_x-input_y
|
||
|
expect = diff*diff
|
||
|
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
|
||
|
double_thousand = np.abs(output-expect)/expect
|
||
|
assert np.all(double_thousand < error)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_broadcast_type_error():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||
|
np.random.seed(42)
|
||
|
net = SquaredDifference()
|
||
|
input_x = np.random.randint(20, 30, (1, 2)).astype(np.bool)
|
||
|
input_y = np.random.rand(3, 1, 5, 1).astype(np.bool)
|
||
|
try:
|
||
|
net(Tensor(input_x), Tensor(input_y))
|
||
|
except TypeError:
|
||
|
assert True
|