You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_squared_difference_op.py

315 lines
11 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class SquaredDifference(nn.Cell):
def __init__(self):
super(SquaredDifference, self).__init__()
self.squaredDiff = P.SquaredDifference()
def construct(self, x, y):
return self.squaredDiff(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_nobroadcast_f16():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.uniform(10, 20, (3, 4, 5, 2)).astype(np.float16)
input_y = np.random.uniform(40, 50, (3, 4, 5, 2)).astype(np.float16)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
assert np.all(output == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_nobroadcast_f32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(3, 4, 5, 2).astype(np.float32)
input_y = np.random.rand(3, 4, 5, 2).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
assert np.all(output == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_nobroadcast_int32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(3, 4, 5, 2).astype(np.int32)
input_y = np.random.rand(3, 4, 5, 2).astype(np.int32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
assert np.all(output == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_int32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
input_y = np.random.rand(3, 1, 5, 1).astype(np.int32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
assert np.all(output == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_f32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(1, 4, 1, 2).astype(np.float32)
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
assert np.all(output == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_f16():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(1, 4, 1, 2).astype(np.float16)
input_y = np.random.rand(3, 1, 5, 1).astype(np.float16)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
assert np.all(output == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_bool():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(1, 4, 1, 2).astype(np.bool)
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
double_check = np.abs(output-expect)/expect
assert np.all(double_check < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_nobroadcast_bool():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(3, 4, 5, 2).astype(np.bool)
input_y = np.random.rand(3, 4, 5, 2).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
double_check = np.abs(output-expect)/expect
assert np.all(double_check < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_int32_f16():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float16)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
double_check = np.abs(output-expect)/expect
assert np.all(double_check < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_int32_f32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(1, 4, 1, 2).astype(np.int32)
input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
double_check = np.abs(output-expect)/expect
assert np.all(double_check < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_nobroadcast_int32_f16():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(2, 4, 3, 2).astype(np.int32)
input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float16)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
double_check = np.abs(output-expect)/expect
assert np.all(double_check < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_nobroadcast_int32_f32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(2, 4, 3, 2).astype(np.int32)
input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6
double_check = np.abs(output-expect)/expect
assert np.all(double_check < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_f32_scalar_tensor():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(2).astype(np.float32)
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
assert np.all(output == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_f32_tensor_tensor():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(1, 2).astype(np.float32)
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
assert np.all(output == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_f32_tensor_tensor_dim_over_7():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(1, 2).astype(np.float32)
input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2, 1).astype(np.float32)
try:
net(Tensor(input_x), Tensor(input_y))
except RuntimeError:
assert True
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_f32_tensor_tensor_cannot_brocast():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.rand(5, 3).astype(np.float32)
input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2).astype(np.float32)
try:
net(Tensor(input_x), Tensor(input_y))
except ValueError:
assert True
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_int_f32_precision():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.randint(20, 30, (1, 2)).astype(np.int32)
input_y = np.random.rand(3, 1, 5, 1).astype(np.float32)
output = net(Tensor(input_x), Tensor(input_y)).asnumpy()
diff = input_x-input_y
expect = diff*diff
error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3
double_thousand = np.abs(output-expect)/expect
assert np.all(double_thousand < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_type_error():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(42)
net = SquaredDifference()
input_x = np.random.randint(20, 30, (1, 2)).astype(np.bool)
input_y = np.random.rand(3, 1, 5, 1).astype(np.bool)
try:
net(Tensor(input_x), Tensor(input_y))
except TypeError:
assert True