You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_unpack_op.py

176 lines
5.0 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore.ops.operations.array_ops as P
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
class UnstackNet(nn.Cell):
def __init__(self, nptype):
super(UnstackNet, self).__init__()
self.unstack = P.Unstack(axis=3)
self.data_np = np.array([[[[[0, 0],
[0, 1]],
[[0, 0],
[2, 3]]],
[[[0, 0],
[4, 5]],
[[0, 0],
[6, 7]]]],
[[[[0, 0],
[8, 9]],
[[0, 0],
[10, 11]]],
[[[0, 0],
[12, 13]],
[[0, 0],
[14, 15]]]]]).astype(nptype)
self.x1 = Parameter(initializer(Tensor(self.data_np), [2, 2, 2, 2, 2]), name='x1')
@ms_function
def construct(self):
return self.unstack(self.x1)
def unstack(nptype):
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
unstack_ = UnstackNet(nptype)
output = unstack_()
expect = (np.reshape(np.array([0] * 16).astype(nptype), (2, 2, 2, 2)),
np.arange(2 * 2 * 2 * 2).reshape(2, 2, 2, 2).astype(nptype))
for i, exp in enumerate(expect):
assert (output[i].asnumpy() == exp).all()
def unstack_pynative(nptype):
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
x1 = np.array([[[[[0, 0],
[0, 1]],
[[0, 0],
[2, 3]]],
[[[0, 0],
[4, 5]],
[[0, 0],
[6, 7]]]],
[[[[0, 0],
[8, 9]],
[[0, 0],
[10, 11]]],
[[[0, 0],
[12, 13]],
[[0, 0],
[14, 15]]]]]).astype(nptype)
x1 = Tensor(x1)
expect = (np.reshape(np.array([0] * 16).astype(nptype), (2, 2, 2, 2)),
np.arange(2 * 2 * 2 * 2).reshape(2, 2, 2, 2).astype(nptype))
output = P.Unstack(axis=3)(x1)
for i, exp in enumerate(expect):
assert (output[i].asnumpy() == exp).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_graph_float32():
unstack(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_graph_float16():
unstack(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_graph_int32():
unstack(np.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_graph_int16():
unstack(np.int16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_graph_uint8():
unstack(np.uint8)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_graph_bool():
unstack(np.bool)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_pynative_float32():
unstack_pynative(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_pynative_float16():
unstack_pynative(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_pynative_int32():
unstack_pynative(np.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_pynative_int16():
unstack_pynative(np.int16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_pynative_uint8():
unstack_pynative(np.uint8)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_unstack_pynative_bool():
unstack_pynative(np.bool)