You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/ops/test_control_ops.py

1009 lines
28 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test control ops """
import numpy as np
5 years ago
import pytest
5 years ago
import mindspore as ms
from mindspore import Tensor
from mindspore import context
5 years ago
from mindspore import nn
from mindspore.common import dtype as mstype
from mindspore.ops import composite as C
from mindspore.ops import functional as F
5 years ago
from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter, ParameterTuple
from mindspore.common import ms_function
context.set_context(mode=context.GRAPH_MODE)
grad_by_list = C.GradOperation(get_by_list=True)
grad_all = C.GradOperation(get_all=True)
grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
def cond_data_test(x_init, y_init):
class Net(nn.Cell):
def __init__(self):
""""""
super(Net, self).__init__()
self.square = P.Square()
self.add = P.Add()
self.value = Tensor(3, dtype=ms.float32)
self.switch = P.GeSwitch()
self.merge = P.Merge()
self.less = P.Less()
def construct(self, x, y):
cond = self.less(x, y)
st1, _ = self.switch(x, cond)
st2, _ = self.switch(y, cond)
add_ret = self.add(st1, st2)
_, sf3 = self.switch(self.value, cond)
sq_ret = self.square(sf3)
ret = self.merge((add_ret, sq_ret))
return ret[0]
x = Tensor(x_init, dtype=ms.float32)
y = Tensor(y_init, dtype=ms.float32)
net = Net()
output = net(x, y)
return output
def test_cond_data_true():
output = cond_data_test(3, 8)
print("test_cond_data_true:", output)
5 years ago
def test_cond_data_false():
output = cond_data_test(8, 3)
print("test_cond_data_false:", output)
5 years ago
def if_compile_test(x_init, y_init):
class Net(nn.Cell):
def __init__(self):
""""""
super(Net, self).__init__()
self.square = P.Square()
self.add = P.Add()
self.value = Tensor(3, dtype=ms.float32)
self.switch = P.GeSwitch()
self.merge = P.Merge()
self.less = P.Less()
def construct(self, x, y):
cond = self.less(x, y)
ret = self.value
if cond:
ret = self.add(x, ret)
ret = self.add(y, ret)
else:
ret = self.square(self.value)
return ret
x = Tensor(x_init, dtype=ms.float32)
y = Tensor(y_init, dtype=ms.float32)
net = Net()
output = net(x, y)
return output
def test_if_none():
class Net(nn.Cell):
def __init__(self, z: None):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = None
net = Net(z)
assert np.all(net(x, y).asnumpy() == y.asnumpy())
5 years ago
def test_if_str_is_not_none_right():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z is None:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = "ok"
net = Net(z)
assert np.all(net(x, y).asnumpy() == y.asnumpy())
def test_if_str_is_not_none_left():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z is None:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = "ok"
net = Net(z)
assert np.all(net(x, y).asnumpy() == y.asnumpy())
def test_if_none_equal_none():
class Net(nn.Cell):
def __init__(self, z: None):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z is None:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = None
net = Net(z)
assert np.all(net(x, y).asnumpy() == x.asnumpy())
def test_if_str_is_null():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = ""
net = Net(z)
assert np.all(net(x, y).asnumpy() == y.asnumpy())
def test_if_str_is_true():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 9, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = "ok"
net = Net(z)
assert np.all(net(x, y).asnumpy() == x.asnumpy())
def test_if_str_equal():
class Net(nn.Cell):
def __init__(self, z: str):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z == "ok":
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = "ok"
net = Net(z)
assert np.all(net(x, y).asnumpy() == x.asnumpy())
def test_if_tuple_is_null():
class Net(nn.Cell):
def __init__(self, z: tuple):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = ()
net = Net(z)
assert np.all(net(x, y).asnumpy() == y.asnumpy())
def test_if_tuple_is_not_null():
class Net(nn.Cell):
def __init__(self, z: tuple):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = (1, 2, 3)
net = Net(z)
assert np.all(net(x, y).asnumpy() == x.asnumpy())
def test_if_dict_is_null():
class Net(nn.Cell):
def __init__(self, z: dict):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = {}
net = Net(z)
assert np.all(net(x, y).asnumpy() == y.asnumpy())
def test_if_dict_is_not_null():
class Net(nn.Cell):
def __init__(self, z: dict):
""""""
super(Net, self).__init__()
self.z = z
def construct(self, x, y):
if self.z:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = {"one": 1, "two": 2}
net = Net(z)
assert np.all(net(x, y).asnumpy() == x.asnumpy())
def test_if_else_assign():
class Net(nn.Cell):
def __init__(self, m: list):
""""""
super(Net, self).__init__()
self.m = m
self.n = [4, 5, 6]
def construct(self, x, y):
exp_1 = self.m if self.m else self.n
exp_2 = self.m if exp_1 == self.n else self.n
if exp_2 == self.m:
if self.m:
ret = x
else:
ret = y
else:
if self.m:
ret = x
else:
ret = y
return ret
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.zeros([3, 4, 5], np.int32))
z = [1, 2]
net = Net(z)
assert np.all(net(x, y).asnumpy() == x.asnumpy())
def test_if_compile_true():
output = if_compile_test(3, 8)
print("test_if_compile_true:", output)
def test_if_compile_false():
output = if_compile_test(8, 3)
print("test_if_compile_false:", output)
def test_switch_layer():
class Layer1(nn.Cell):
def __init__(self):
super(Layer1, self).__init__()
self.z1 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z1')
5 years ago
def construct(self, x):
return x * self.z1
class Layer2(nn.Cell):
def __init__(self):
super(Layer2, self).__init__()
self.z2 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z2')
5 years ago
def construct(self, x):
return x * self.z2
class SwitchLayerCell(nn.Cell):
def __init__(self):
super(SwitchLayerCell, self).__init__()
self.layers = (Layer1(), Layer2())
self.z3 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
5 years ago
def construct(self, index, x):
ret = F.switch_layer(index, self.layers)(x) * self.z3
return ret
index = Tensor(0, dtype=mstype.int32)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
5 years ago
def test_index_to_switch_layer():
class Layer1(nn.Cell):
def __init__(self):
super(Layer1, self).__init__()
self.z1 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z1')
5 years ago
def construct(self, x):
return x * self.z1
class Layer2(nn.Cell):
def __init__(self):
super(Layer2, self).__init__()
self.z2 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z2')
5 years ago
def construct(self, x):
return x * self.z2
class SwitchLayerCell(nn.Cell):
def __init__(self):
super(SwitchLayerCell, self).__init__()
self.layers = (Layer1(), Layer2())
self.z3 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
5 years ago
def construct(self, index, x):
ret = self.layers[index](x) * self.z3
return ret
index = Tensor(0, dtype=mstype.int32)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
5 years ago
def test_parser_switch_layer_switch_in_bprop():
class OneInputBprop(nn.Cell):
def __init__(self, funcs):
super(OneInputBprop, self).__init__()
self.op = P.ReLU()
self.funcs = funcs
5 years ago
def construct(self, i, x):
5 years ago
return self.op(x)
def bprop(self, i, x, out, dout):
return i, self.funcs[i](x, dout)
class Add(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Add()
def construct(self, x, y):
return self.op(x, y)
class Mul(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Mul()
def construct(self, x, y):
return self.op(x, y)
5 years ago
func1 = Add()
func2 = Mul()
funcs = (func1, func2)
net = OneInputBprop(funcs)
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
grad = Tensor(np.random.randn(2, 2).astype(np.float32))
i = Tensor(1, mstype.int32)
grad_net = grad_all_with_sens(net)
grad_net(i, input1, grad)
def test_parser_switch_layer_inputs_tuple():
class TwoInputTupleFinalNet(nn.Cell):
def __init__(self, funcs):
super().__init__()
self.funcs = funcs
def construct(self, i, inputa, inputb):
inputs = (inputa, inputb)
x = self.funcs[i](inputs)
return x
class Add(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Add()
def construct(self, x):
y = self.op(x[0], x[1])
return self.op(x[0], y)
class Mul(nn.Cell):
def __init__(self):
super().__init__()
self.op = P.Mul()
def construct(self, x):
y = self.op(x[0], x[1])
return self.op(x[0], y)
func1 = Add()
func2 = Mul()
funcs = (func1, func2)
net = TwoInputTupleFinalNet(funcs)
input1 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
input2 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
i = Tensor(1, mstype.int32)
grad = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
back_net = grad_all_with_sens(net)
back_out = back_net(i, input1, input2, grad)
def test_switch_layer_with_single_prim():
class SwitchLayerCell(nn.Cell):
def __init__(self):
super(SwitchLayerCell, self).__init__()
self.layers = (nn.ReLU(), nn.ReLU())
self.z3 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
def construct(self, index, x):
ret = self.layers[index](x) * self.z3
return ret
index = Tensor(0, dtype=mstype.int32)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
def test_switch_layer_env_eliminate():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(1, 1, 3, pad_mode='same')
self.conv2 = nn.Conv2d(1, 1, 5, pad_mode='same')
self.funs = (self.conv, self.conv2)
def construct(self, x, index):
x = self.funs[index](x)
return x
class NetGrad(nn.Cell):
def __init__(self, net):
super(NetGrad, self).__init__()
self.grad_op = C.GradOperation(get_by_list=True, sens_param=False)
self.net = net
self.weights = ParameterTuple(self.net.trainable_params())
def construct(self, x, index):
weights = self.weights
grad = self.grad_op(self.net, weights)(x, index)
return grad
5 years ago
net = Net()
net2 = NetGrad(net)
x = Tensor(np.ones((3, 1, 12, 12)), ms.float32)
i = Tensor(1, ms.int32)
net2(x, i)
def test_switch_layer_single_layer():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(1, 1, 3, pad_mode='same')
self.funs = (self.conv,)
def construct(self, x, index):
x = self.funs[index](x)
return x
class NetGrad(nn.Cell):
def __init__(self, net):
super(NetGrad, self).__init__()
self.grad_op = C.GradOperation(get_by_list=True, sens_param=False)
self.net = net
self.weights = ParameterTuple(self.net.trainable_params())
def construct(self, x, index):
weights = self.weights
grad = self.grad_op(self.net, weights)(x, index)
return grad
5 years ago
net = Net()
net2 = NetGrad(net)
x = Tensor(np.ones((3, 1, 12, 12)), ms.float32)
i = Tensor(1, ms.int32)
net2(x, i)
def test_if_nested_compile():
class Net(nn.Cell):
def __init__(self, auto_prefix=True):
super().__init__(auto_prefix=auto_prefix)
self.squre = P.Square()
self.value = Tensor(3, dtype=ms.float32)
def construct(self, x, y):
res = self.value
if x <= y:
res = x + res
res = y + res
else:
if x == y:
res = self.squre(self.value * y)
else:
res = self.squre(self.value)
return res
5 years ago
x = Tensor(1.0, dtype=ms.float32)
y = Tensor(2.0, dtype=ms.float32)
net = Net()
net(x, y)
def test_if_inside_for():
class Net(nn.Cell):
def __init__(self, auto_prefix=True):
super().__init__(auto_prefix=auto_prefix)
self.squre = P.Square()
self.value = Tensor(3, dtype=ms.float32)
self.count = 4
def construct(self, x, y):
res = 0
for i in range(self.count):
if i == x:
res = res + x
else:
res = res - y
return res
5 years ago
c1 = Tensor(1, dtype=ms.int32)
c2 = Tensor(1, dtype=ms.int32)
net = Net()
net(c1, c2)
def test_while_in_while():
c1 = Tensor(1, dtype=ms.int32)
c2 = Tensor(2, dtype=ms.int32)
c3 = Tensor(3, dtype=ms.int32)
c4 = Tensor(4, dtype=ms.int32)
5 years ago
@ms_function
def while_in_while(x, y, z, u):
out = c4
while x < y:
z = c4 + c4
while z < y:
z = z + 1
out = out + 1
x = x + 1
out = out + 3
return out
5 years ago
while_in_while(c1, c2, c3, c4)
def test_tensor_cond():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.t = Tensor(np.array(0, np.bool))
self.t1 = Tensor(np.array([True], np.bool))
5 years ago
def construct(self, x, y):
t = 0
if self.t:
t = t - x * y
else:
t = t - x / y
if self.t1:
t = t + x / y
else:
t = t + x * y
return t
5 years ago
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.ones([6, 8, 10], np.int32))
net = Net()
out = net(x, y)
5 years ago
def test_tensor_cond_exception():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.t = Tensor(np.array([True, False], np.bool))
5 years ago
def construct(self, x, y):
t = 0
if self.t:
t = t - x * y
else:
t = t - x / y
return t
5 years ago
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.ones([6, 8, 10], np.int32))
net = Net()
with pytest.raises(ValueError):
out = net(x, y)
5 years ago
def test_while_scalar():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.x = 10
5 years ago
def construct(self, x, y):
i = 0
t = 0
while (i < 10):
t = t + x + y
i = i + 1
return t
5 years ago
net = Net()
x = Tensor(np.ones([6, 8, 10], np.int32))
y = Tensor(np.ones([6, 8, 10], np.int32))
out = net(x, y)
5 years ago
def test_large_for_loop():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
5 years ago
self.flatten = P.ReLU() # nn.Flatten()
def construct(self, x):
for elem in range(1, 1900):
x = self.flatten(x + elem)
return x
t = Tensor(np.ones([2, 3], dtype=np.float32))
net = Net()
old_max_call_depth = context.get_context('max_call_depth')
context.set_context(max_call_depth=60)
with pytest.raises(RuntimeError) as err:
net(t)
context.set_context(max_call_depth=old_max_call_depth)
assert 'Exceed function call depth limit 60' in str(err.value)
def test_large_for_loop_with_continue_break():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
5 years ago
self.flatten = P.ReLU() # nn.Flatten()
def construct(self, x):
idx = 0
for elem1 in range(200):
idx = idx + 1
if idx < 10:
x = x + 0.5
continue
if idx > 500:
break
x = self.flatten(x + elem1)
return x
old_max_call_depth = context.get_context('max_call_depth')
context.set_context(max_call_depth=2000)
t = Tensor(np.ones([2, 3], dtype=np.float32))
net = Net()
net(t)
context.set_context(max_call_depth=old_max_call_depth)
def test_mixed_precision_cast():
x = Tensor(np.ones([2, 3], dtype=np.float32))
z = F.mixed_precision_cast(mstype.float16, x)
assert z.dtype == mstype.float16
def test_while_add():
class Net(nn.Cell):
def __init__(self, data):
super(Net, self).__init__()
self.start = Tensor(0, dtype=mstype.int32)
self.end = Tensor(2, dtype=mstype.int32)
self.out = Tensor(np.zeros([2, 3], dtype=np.float32))
self.add = P.Add()
def construct(self, inputs):
idx = self.start
end = self.end
out = self.out
while idx < end:
xi = inputs[idx, :, :]
out = self.add(out, xi)
idx = idx + 1
return out
x = Tensor(np.arange(10 * 2 * 3).reshape(10, 2, 3).astype(np.float32))
net = Net(x)
net(x)
def test_tensor_all_construct_lack_branch():
class NetConditionLackBranch(nn.Cell):
def __init__(self):
super(NetConditionLackBranch, self).__init__()
self.logicaland = P.LogicalAnd()
self.logicalor = P.LogicalOr()
def construct(self, input1, input2):
if input1.all():
return self.logicaland(input1, input2)
while input1.any():
5 years ago
return self.logicalor(input1, input2)
# NOTICE: here missing return statement, default return None
input_np_1 = np.random.choice([True], size=(2, 3, 4, 5))
input_tensor_1 = Tensor(input_np_1)
input_np_2 = np.random.choice([True, False], size=(2, 3, 4, 5))
input_tensor_2 = Tensor(input_np_2)
net = NetConditionLackBranch()
with pytest.raises(Exception):
net(input_tensor_1, input_tensor_2)
def test_parser_switch_layer_func_primitive():
class FinalNet(nn.Cell):
def __init__(self, funcs):
super().__init__()
self.funcs = funcs
def construct(self, i, input1):
x = self.funcs[i](input1)
return x
func1 = P.ReLU()
func2 = P.Softmax()
funcs = (func1, func2)
net = FinalNet(funcs)
input1 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
i = Tensor(1, mstype.int32)
with pytest.raises(ValueError):
net(i, input1)
def test_recursive_call():
class Net(nn.Cell):
""" Net definition """
5 years ago
def __init__(self):
super(Net, self).__init__()
self.fc = nn.Dense(10, 10) # padding=0
5 years ago
# self.net2 = Net2()
def construct(self, x):
net2 = Net2()
x = net2(x)
out = self.fc(x)
return out
5 years ago
class Net2(nn.Cell):
def __init__(self):
super(Net2, self).__init__()
self.net = Net()
self.fc = nn.Dense(10, 10)
5 years ago
def construct(self, x):
x = self.net(x)
out = self.fc(x)
return out
5 years ago
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
old_max_call_depth = context.get_context('max_call_depth')
context.set_context(max_call_depth=80)
input_data = Tensor(np.identity(10).astype(np.float32))
net = Net2()
with pytest.raises(RuntimeError):
net(input_data)
context.set_context(max_call_depth=old_max_call_depth)
def test_switch_layer_shape_join_failed():
class AddFuncNet(nn.Cell):
def __init__(self, funcs, new_func):
super(AddFuncNet, self).__init__()
self.funcs = funcs
self.new_func = new_func
def construct(self, i, inputs):
final_funcs = self.funcs + (self.new_func,)
x = final_funcs[i](inputs)
return x
class ReLUTuple(nn.Cell):
def __init__(self):
super(ReLUTuple, self).__init__()
self.op = nn.ReLU()
def construct(self, x):
return self.op(x[0])
func1 = nn.Softmax()
func2 = nn.ReLU()
func3 = ReLUTuple()
funcs = (func1, func2)
net = AddFuncNet(funcs, func3)
inp = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
i = Tensor(1, mstype.int32)
with pytest.raises(ValueError) as err:
net(i, inp)
def test_switch_layer_dtype_join_failed():
class Cast(nn.Cell):
def __init__(self, dtype):
super(Cast, self).__init__()
self.op = P.Cast()
self.dtype = dtype
def construct(self, x):
y = self.op(x, self.dtype)
return y + y
class SwitchNegNet(nn.Cell):
def __init__(self, funcs):
super(SwitchNegNet, self).__init__()
self.funcs = funcs
self.op = P.Neg()
def construct(self, i, inputs):
x = self.funcs[i](inputs)
x = self.op(x)
return x
func1 = nn.ReLU()
func2 = Cast(mstype.int32)
funcs = (func1, func2)
net = SwitchNegNet(funcs)
inp = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
i = Tensor(0, mstype.int32)
with pytest.raises(TypeError) as err:
net(i, inp)
def test_large_for_loop_case2():
class Menet(nn.Cell):
def __init__(self, axis, flag_boottom, flag_top):
super(Menet, self).__init__()
self.squeeze = P.Squeeze(axis)
self.expanddims = P.ExpandDims()
self.flatten = nn.Flatten()
self.neg = P.Neg()
self.axis = axis
self.flag_boottom = flag_boottom
self.flag_top = flag_top
def construct(self, x):
if self.flag_boottom:
x = self.neg(x)
for i in range(0, 1500):
x = self.expanddims(x, self.axis)
x = self.squeeze(x)
x = self.flatten(x)
if self.flag_top:
x = self.neg(x)
return x
x = Tensor(np.ones([2, 3], dtype=np.float32))
net = Menet(axis=0, flag_boottom=True, flag_top=True)
old_max_call_depth = context.get_context('max_call_depth')
context.set_context(max_call_depth=80)
with pytest.raises(RuntimeError) as err:
net(x)
context.set_context(max_call_depth=old_max_call_depth)
assert 'Exceed function call depth limit 80' in str(err.value)