|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
""" test_bprop """
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore.common import Tensor
|
|
|
|
from mindspore.common.api import ms_function
|
|
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from ....mindspore_test_framework.utils.bprop_util import bprop
|
|
|
|
|
|
|
|
|
|
|
|
def setup_module():
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
""" Net definition """
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.matmul = P.MatMul()
|
|
|
|
self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z')
|
|
|
|
|
|
|
|
@ms_function
|
|
|
|
def construct(self, x, y):
|
|
|
|
x = x * self.z
|
|
|
|
out = self.matmul(x, y)
|
|
|
|
return x, out
|
|
|
|
|
|
|
|
|
|
|
|
def test_bprop_no_sens():
|
|
|
|
grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)),
|
|
|
|
Tensor(np.ones([3, 2]).astype(np.float32)), wrt=['inputs'])
|
|
|
|
print(grads)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bprop_sens():
|
|
|
|
grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
|
|
|
|
grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)),
|
|
|
|
Tensor(np.ones([2, 2]).astype(np.float32))), wrt=['inputs'])
|
|
|
|
print(grads)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bprop_first_only():
|
|
|
|
grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
|
|
|
|
grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)),
|
|
|
|
Tensor(np.ones([2, 2]).astype(np.float32))))
|
|
|
|
print(grads)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bprop_wrt_params():
|
|
|
|
net = Net()
|
|
|
|
grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
|
|
|
|
grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)),
|
|
|
|
Tensor(np.ones([2, 2]).astype(np.float32))),
|
|
|
|
wrt=['params'],
|
|
|
|
params=net.trainable_params())
|
|
|
|
print(grads)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bprop_wrt_params_no_sens():
|
|
|
|
net = Net()
|
|
|
|
grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
|
|
|
|
wrt=['params'],
|
|
|
|
params=net.trainable_params())
|
|
|
|
print(grads)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bprop_wrt_inputs_and_params():
|
|
|
|
net = Net()
|
|
|
|
grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)),
|
|
|
|
grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)),
|
|
|
|
Tensor(np.ones([2, 2]).astype(np.float32))),
|
|
|
|
wrt=['inputs', 'params'],
|
|
|
|
params=net.trainable_params())
|
|
|
|
print(grads)
|