You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_prelu_cell.py

119 lines
3.5 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
5 years ago
import mindspore as ms
import mindspore.nn as nn
5 years ago
from mindspore import Tensor
from mindspore import context
from mindspore.common.initializer import initializer
5 years ago
from mindspore.common.parameter import Parameter
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.train import Model
from mindspore.context import ParallelMode
5 years ago
from tests.dataset_mock import MindData
5 years ago
context.set_context(mode=context.GRAPH_MODE)
class Dataset(MindData):
def __init__(self, predict, label, length=3, input_num=2):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
self.input_num = input_num
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
if self.input_num == 2:
return (self.predict, self.label)
return (self.predict,)
def reset(self):
self.index = 0
class PReLU(nn.Cell):
def __init__(self, channel=1, w=0.25):
super(PReLU, self).__init__()
if isinstance(w, (np.float32, float)):
tmp = np.empty((channel,), dtype=np.float32)
tmp.fill(w)
w = Tensor(tmp)
elif isinstance(w, list):
w = Tensor(w)
if not isinstance(w, Tensor):
raise TypeError("w only support np.float32, float or Tensor type.")
self.w = Parameter(initializer(w, [channel,]), name='a')
self.prelu = P.PReLU()
self.relu = P.ReLU().shard(((1,),))
self.sub = P.Sub().shard(((1,), (1,)))
self.assign_sub = P.AssignSub().shard(((1,), (1,)))
def construct(self, x):
u = self.relu(self.w)
tmp = self.sub(self.w, u)
x = F.depend(x, self.assign_sub(self.w, tmp))
v = self.prelu(x, u)
return v
class PReLUNet(nn.Cell):
def __init__(self):
super(PReLUNet, self).__init__()
self.prelu = PReLU(channel=256)
def construct(self, x):
x = self.prelu(x)
return x
def prelu_net():
return PReLUNet()
def reshape_common(parallel_mode):
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
predict = Tensor(np.ones([32, 256]), dtype=ms.float32)
label = Tensor(np.ones([32]), dtype=ms.int32)
dataset = Dataset(predict, label, 2)
net = prelu_net()
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, loss, opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
def test_prelu_cell():
reshape_common(ParallelMode.SEMI_AUTO_PARALLEL)