You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
2.5 KiB
54 lines
2.5 KiB
4 years ago
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
"""Export Resnet50 on ImageNet"""
|
||
|
|
||
|
import argparse
|
||
|
import numpy as np
|
||
|
|
||
|
import mindspore
|
||
|
from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
|
||
|
from mindspore.compression.quant import QuantizationAwareTraining
|
||
|
|
||
|
from models.resnet_quant_manual import resnet50_quant
|
||
|
from src.config import config_quant
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='Image classification')
|
||
|
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||
|
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format")
|
||
|
parser.add_argument('--device_target', type=str, default=None, help='Run device target')
|
||
|
args_opt = parser.parse_args()
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
|
||
|
# define fusion network
|
||
|
network = resnet50_quant(class_num=config_quant.class_num)
|
||
|
# convert fusion network to quantization aware network
|
||
|
quantizer = QuantizationAwareTraining(bn_fold=True,
|
||
|
per_channel=[True, False],
|
||
|
symmetric=[True, False])
|
||
|
network = quantizer.quantize(network)
|
||
|
# load checkpoint
|
||
|
if args_opt.checkpoint_path:
|
||
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||
|
not_load_param = load_param_into_net(network, param_dict)
|
||
|
if not_load_param:
|
||
|
raise ValueError("Load param into network fail!")
|
||
|
# export network
|
||
|
print("============== Starting export ==============")
|
||
|
inputs = Tensor(np.ones([1, 3, 224, 224]), mindspore.float32)
|
||
|
export(network, inputs, file_name="resnet50_quant", file_format=args_opt.file_format,
|
||
|
quant_mode='MANUAL', mean=0., std_dev=48.106)
|
||
|
print("============== End export ==============")
|