You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/summary/test_gpu_summary.py

90 lines
2.9 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Summary gpu st."""
import os
import random
import tempfile
5 years ago
import shutil
5 years ago
import numpy as np
import pytest
5 years ago
import mindspore.context as context
5 years ago
import mindspore.nn as nn
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
from mindspore.train.summary.summary_record import SummaryRecord
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class SummaryNet(nn.Cell):
"""Summary net."""
def __init__(self, tag_tuple=None, scalar=1):
super(SummaryNet, self).__init__()
self.summary_s = P.ScalarSummary()
self.summary_i = P.ImageSummary()
self.summary_t = P.TensorSummary()
self.histogram_summary = P.HistogramSummary()
self.add = P.TensorAdd()
self.tag_tuple = tag_tuple
self.scalar = scalar
def construct(self, x, y, image):
"""Run summary net."""
self.summary_i("image", image)
self.summary_s("x1", x)
z = self.add(x, y)
self.summary_t("z1", z)
self.histogram_summary("histogram", z)
return z
def train_summary_record(test_writer, steps):
"""Train and record summary."""
net = SummaryNet()
out_me_dict = {}
for i in range(0, steps):
x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
image = Tensor(np.array([[[[1.2]]]]).astype(np.float32))
out_put = net(x, y, image)
test_writer.record(i)
out_me_dict[i] = out_put.asnumpy()
return out_me_dict
class TestGpuSummary:
"""Test Gpu summary."""
summary_dir = tempfile.mkdtemp(suffix='_gpu_summary')
def setup_method(self):
"""Run before method."""
if not os.path.exists(self.summary_dir):
os.mkdir(self.summary_dir)
def teardown_emthod(self):
"""Run after method."""
if os.path.exists(self.summary_dir):
shutil.rmtree(self.summary_dir)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_summary_step10_summaryrecord1(self):
"""Test record 10 step summary."""
with SummaryRecord(self.summary_dir) as test_writer:
train_summary_record(test_writer, steps=10)