You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
8.0 KiB
218 lines
8.0 KiB
4 years ago
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import mindspore.context as context
|
||
|
import mindspore.nn as nn
|
||
|
from mindspore import Tensor
|
||
|
from mindspore.ops import operations as P
|
||
|
|
||
|
|
||
|
class LessNet(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(LessNet, self).__init__()
|
||
|
self.ops = P.Less()
|
||
|
|
||
|
def construct(self, x, y):
|
||
|
return self.ops(x, y)
|
||
|
|
||
|
|
||
|
class GreaterNet(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(GreaterNet, self).__init__()
|
||
|
self.ops = P.Greater()
|
||
|
|
||
|
def construct(self, x, y):
|
||
|
return self.ops(x, y)
|
||
|
|
||
|
|
||
|
class LessEqualNet(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(LessEqualNet, self).__init__()
|
||
|
self.ops = P.LessEqual()
|
||
|
|
||
|
def construct(self, x, y):
|
||
|
return self.ops(x, y)
|
||
|
|
||
|
|
||
|
class GreaterEqualNet(nn.Cell):
|
||
|
def __init__(self):
|
||
|
super(GreaterEqualNet, self).__init__()
|
||
|
self.ops = P.GreaterEqual()
|
||
|
|
||
|
def construct(self, x, y):
|
||
|
return self.ops(x, y)
|
||
|
|
||
|
|
||
|
def gen_data():
|
||
|
# Generate data which contains broadcast scene and two inputs are expr.
|
||
|
np.random.seed(0)
|
||
|
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||
|
y0_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32)
|
||
|
x1_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float16)
|
||
|
y1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16)
|
||
|
x2_np = np.random.randint(1, 5, 1).astype(np.int32)
|
||
|
y2_np = np.random.randint(1, 5, 1).astype(np.int32)
|
||
|
x3_np = np.array(768).astype(np.float32)
|
||
|
y3_np = np.array(3072.5).astype(np.float32)
|
||
|
|
||
|
x0 = Tensor(x0_np)
|
||
|
y0 = Tensor(y0_np)
|
||
|
x1 = Tensor(x1_np)
|
||
|
y1 = Tensor(y1_np)
|
||
|
x2 = Tensor(x2_np)
|
||
|
y2 = Tensor(y2_np)
|
||
|
x3 = Tensor(x3_np)
|
||
|
y3 = Tensor(y3_np)
|
||
|
return x0, y0, x1, y1, x2, y2, x3, y3
|
||
|
|
||
|
|
||
|
def get_less_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False):
|
||
|
context.set_context(enable_graph_kernel=enable_graph_kernel)
|
||
|
net_less = LessNet()
|
||
|
less_output_0 = net_less(x0, y0).asnumpy()
|
||
|
less_output_1 = net_less(x1, y1).asnumpy()
|
||
|
less_output_2 = net_less(x2, y2).asnumpy()
|
||
|
less_output_3 = net_less(x3, y3).asnumpy()
|
||
|
return less_output_0, less_output_1, less_output_2, less_output_3
|
||
|
|
||
|
|
||
|
def get_greater_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False):
|
||
|
context.set_context(enable_graph_kernel=enable_graph_kernel)
|
||
|
net_greater = GreaterNet()
|
||
|
greater_output_0 = net_greater(x0, y0).asnumpy()
|
||
|
greater_output_1 = net_greater(x1, y1).asnumpy()
|
||
|
greater_output_2 = net_greater(x2, y2).asnumpy()
|
||
|
greater_output_3 = net_greater(x3, y3).asnumpy()
|
||
|
return greater_output_0, greater_output_1, greater_output_2, greater_output_3
|
||
|
|
||
|
|
||
|
def get_less_equal_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False):
|
||
|
context.set_context(enable_graph_kernel=enable_graph_kernel)
|
||
|
net_less_equal = LessEqualNet()
|
||
|
less_equal_output_0 = net_less_equal(x0, y0).asnumpy()
|
||
|
less_equal_output_1 = net_less_equal(x1, y1).asnumpy()
|
||
|
less_equal_output_2 = net_less_equal(x2, y2).asnumpy()
|
||
|
less_equal_output_3 = net_less_equal(x3, y3).asnumpy()
|
||
|
return less_equal_output_0, less_equal_output_1, less_equal_output_2, less_equal_output_3
|
||
|
|
||
|
|
||
|
def get_greater_equal_net_output(x0, y0, x1, y1, x2, y2, x3, y3, enable_graph_kernel=False):
|
||
|
context.set_context(enable_graph_kernel=enable_graph_kernel)
|
||
|
net_greater_equal = GreaterEqualNet()
|
||
|
greter_equal_output_0 = net_greater_equal(x0, y0).asnumpy()
|
||
|
greter_equal_output_1 = net_greater_equal(x1, y1).asnumpy()
|
||
|
greter_equal_output_2 = net_greater_equal(x2, y2).asnumpy()
|
||
|
greter_equal_output_3 = net_greater_equal(x3, y3).asnumpy()
|
||
|
return greter_equal_output_0, greter_equal_output_1, greter_equal_output_2, greter_equal_output_3
|
||
|
|
||
|
|
||
|
def test_less_net():
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3 = gen_data()
|
||
|
out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_less_net_output(x0, y0, x1, y1, x2, y2, x3, y3, True)
|
||
|
out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_less_net_output(
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3, False)
|
||
|
|
||
|
assert np.all(out_gk_on_0 == out_gk_off_0)
|
||
|
assert out_gk_on_0.shape == out_gk_off_0.shape
|
||
|
assert np.all(out_gk_on_1 == out_gk_off_1)
|
||
|
assert out_gk_on_1.shape == out_gk_off_1.shape
|
||
|
assert np.all(out_gk_on_2 == out_gk_off_2)
|
||
|
assert out_gk_on_2.shape == out_gk_off_2.shape
|
||
|
assert np.all(out_gk_on_3 == out_gk_off_3)
|
||
|
assert out_gk_on_3.shape == out_gk_off_3.shape
|
||
|
|
||
|
|
||
|
def test_greater_net():
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3 = gen_data()
|
||
|
out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_greater_net_output(x0, y0, x1, y1, x2, y2, x3, y3, True)
|
||
|
out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_greater_net_output(
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3, False)
|
||
|
|
||
|
assert np.all(out_gk_on_0 == out_gk_off_0)
|
||
|
assert out_gk_on_0.shape == out_gk_off_0.shape
|
||
|
assert np.all(out_gk_on_1 == out_gk_off_1)
|
||
|
assert out_gk_on_1.shape == out_gk_off_1.shape
|
||
|
assert np.all(out_gk_on_2 == out_gk_off_2)
|
||
|
assert out_gk_on_2.shape == out_gk_off_2.shape
|
||
|
assert np.all(out_gk_on_3 == out_gk_off_3)
|
||
|
assert out_gk_on_3.shape == out_gk_off_3.shape
|
||
|
|
||
|
|
||
|
def test_less_equal_net():
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3 = gen_data()
|
||
|
out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_less_equal_net_output(
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3, True)
|
||
|
out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_less_equal_net_output(
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3, False)
|
||
|
|
||
|
assert np.all(out_gk_on_0 == out_gk_off_0)
|
||
|
assert out_gk_on_0.shape == out_gk_off_0.shape
|
||
|
assert np.all(out_gk_on_1 == out_gk_off_1)
|
||
|
assert out_gk_on_1.shape == out_gk_off_1.shape
|
||
|
assert np.all(out_gk_on_2 == out_gk_off_2)
|
||
|
assert out_gk_on_2.shape == out_gk_off_2.shape
|
||
|
assert np.all(out_gk_on_3 == out_gk_off_3)
|
||
|
assert out_gk_on_3.shape == out_gk_off_3.shape
|
||
|
|
||
|
|
||
|
def test_greater_equal_net():
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3 = gen_data()
|
||
|
out_gk_on_0, out_gk_on_1, out_gk_on_2, out_gk_on_3 = get_greater_equal_net_output(
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3, True)
|
||
|
out_gk_off_0, out_gk_off_1, out_gk_off_2, out_gk_off_3 = get_greater_equal_net_output(
|
||
|
x0, y0, x1, y1, x2, y2, x3, y3, False)
|
||
|
|
||
|
assert np.all(out_gk_on_0 == out_gk_off_0)
|
||
|
assert out_gk_on_0.shape == out_gk_off_0.shape
|
||
|
assert np.all(out_gk_on_1 == out_gk_off_1)
|
||
|
assert out_gk_on_1.shape == out_gk_off_1.shape
|
||
|
assert np.all(out_gk_on_2 == out_gk_off_2)
|
||
|
assert out_gk_on_2.shape == out_gk_off_2.shape
|
||
|
assert np.all(out_gk_on_3 == out_gk_off_3)
|
||
|
assert out_gk_on_3.shape == out_gk_off_3.shape
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_less_gpu():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||
|
test_less_net()
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_greater_gpu():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||
|
test_greater_net()
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_less_equal_gpu():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||
|
test_less_equal_net()
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_gpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_greater_equal_gpu():
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||
|
test_greater_equal_net()
|