# Contents
- [AlexNet Description ](#alexnet-description )
- [Model Architecture ](#model-architecture )
- [Dataset ](#dataset )
- [Environment Requirements ](#environment-requirements )
- [Quick Start ](#quick-start )
- [Script Description ](#script-description )
- [Script and Sample Code ](#script-and-sample-code )
- [Script Parameters ](#script-parameters )
- [Training Process ](#training-process )
- [Training ](#training )
- [Evaluation Process ](#evaluation-process )
- [Evaluation ](#evaluation )
- [Model Description ](#model-description )
- [Performance ](#performance )
- [Evaluation Performance ](#evaluation-performance )
- [ModelZoo Homepage ](#modelzoo-homepage )
## [AlexNet Description](#contents)
AlexNet was proposed in 2012, one of the most influential neural networks. It got big success in ImageNet Dataset recognition than other models.
[Paper ](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf ): Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep ConvolutionalNeural Networks. *Advances In Neural Information Processing Systems* . 2012.
## [Model Architecture](#contents)
AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification.
## [Dataset](#contents)
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
Dataset used: [CIFAR-10 ](<http://www.cs.toronto.edu/~kriz/cifar.html> )
- Dataset size: 175M, 60,000 32*32 colorful images in 10 classes
- Train: 146M, 50,000 images
- Test: 29.3M, 10,000 images
- Data format: binary files
- Note: Data will be processed in dataset.py
- Download the dataset, the directory structure is as follows:
```bash
├─cifar-10-batches-bin
│
└─cifar-10-verify-bin
```
## [Environment Requirements](#contents)
- Hardware( Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore ](https://www.mindspore.cn/install/en )
- For more information, please check the resources below:
- [MindSpore Tutorials ](https://www.mindspore.cn/tutorial/training/en/master/index.html )
- [MindSpore Python API ](https://www.mindspore.cn/doc/api_python/en/master/index.html )
## [Quick Start](#contents)
After installing MindSpore via the official website, you can start training and evaluation as follows:
```python
# enter script dir, train AlexNet
sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
# enter script dir, evaluate AlexNet
sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
```
## [Script Description](#contents)
### [Script and Sample Code](#contents)
```bash
├── cv
├── alexnet
├── README.md // descriptions about alexnet
├── requirements.txt // package needed
├── scripts
│ ├──run_standalone_train_gpu.sh // train in gpu
│ ├──run_standalone_train_ascend.sh // train in ascend
│ ├──run_standalone_eval_gpu.sh // evaluate in gpu
│ ├──run_standalone_eval_ascend.sh // evaluate in ascend
├── src
│ ├──dataset.py // creating dataset
│ ├──alexnet.py // alexnet architecture
│ ├──config.py // parameter configuration
├── train.py // training script
├── eval.py // evaluation script
```
### [Script Parameters](#contents)
```python
Major parameters in train.py and config.py as follows:
--data_path: The absolute full path to the train and evaluation datasets.
--epoch_size: Total training epochs.
--batch_size: Training batch size.
--image_height: Image height used as input to the model.
--image_width: Image width used as input the model.
--device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU".
--checkpoint_path: The absolute full path to the checkpoint file saved after training.
--data_path: Path where the dataset is saved
```
### [Training Process](#contents)
#### Training
- running on Ascend
```bash
python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log 2>& 1 &
# or enter script dir, and run the script
sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt
```
After training, the loss value will be achieved as follows:
```bash
# grep "loss is " log
epoch: 1 step: 1, loss is 2.2791853
...
epoch: 1 step: 1536, loss is 1.9366643
epoch: 1 step: 1537, loss is 1.6983616
epoch: 1 step: 1538, loss is 1.0221305
...
```
The model checkpoint will be saved in the current directory.
- running on GPU
```bash
python train.py --device_target "GPU" --data_path cifar-10-batches-bin --ckpt_path ckpt > log 2>& 1 &
# or enter script dir, and run the script
sh run_standalone_train_for_gpu.sh cifar-10-batches-bin ckpt
```
After training, the loss value will be achieved as follows:
```bash
# grep "loss is " log
epoch: 1 step: 1, loss is 2.3125906
...
epoch: 30 step: 1560, loss is 0.6687547
epoch: 30 step: 1561, loss is 0.20055409
epoch: 30 step: 1561, loss is 0.103845775
```
### [Evaluation Process](#contents)
#### Evaluation
Before running the command below, please check the checkpoint path used for evaluation.
- running on Ascend
```bash
python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > eval_log.txt 2>& 1 &
# or enter script dir, and run the script
sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt
```
You can view the results through the file "eval_log". The accuracy of the test dataset will be as follows:
```bash
# grep "Accuracy: " eval_log
'Accuracy': 0.8832
```
- running on GPU
```bash
python eval.py --device_target "GPU" --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-30_1562.ckpt > eval_log 2>& 1 &
# or enter script dir, and run the script
sh run_standalone_eval_for_gpu.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-30_1562.ckpt
```
You can view the results through the file "eval_log". The accuracy of the test dataset will be as follows:
```bash
# grep "Accuracy: " eval_log
'Accuracy': 0.88512
```
## [Model Description](#contents)
### [Performance](#contents)
#### Evaluation Performance
| Parameters | Ascend | GPU |
| -------------------------- | ------------------------------------------------------------| -------------------------------------------------|
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G | NV SMX2 V100-32G |
| uploaded Date | 06/09/2020 (month/day/year) | 17/09/2020 (month/day/year) |
| MindSpore Version | 1.0.0 | 0.7.0-beta |
| Dataset | CIFAR-10 | CIFAR-10 |
| Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 | epoch=30, steps=1562, batch_size = 32, lr=0.002 |
| Optimizer | Momentum | Momentum |
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
| outputs | probability | probability |
| Loss | 0.08 | 0.01 |
| Speed | 7.3 ms/step | 16.8 ms/step |
| Total time | 6 mins | 14 mins |
| Checkpoint for Fine tuning | 445M (.ckpt file) | 445M (.ckpt file) |
| Scripts | [AlexNet Script ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet ) | [AlexNet Script ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet ) |
## [Description of Random Situation](#contents)
In dataset.py, we set the seed inside ```create_dataset``` function.
## [ModelZoo Homepage](#contents)
Please check the official [homepage ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo ).