You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/pynative_mode/test_stop_gradient.py

433 lines
12 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_stop_gradient """
import numpy as np
5 years ago
import pytest
import mindspore.common.dtype as mstype
5 years ago
import mindspore.nn as nn
from mindspore import Parameter, ParameterTuple, Tensor
5 years ago
from mindspore import Tensor
from mindspore import context
from mindspore import context
from mindspore.common.api import ms_function
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.ops.functional import stop_gradient
from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.utils.bprop_util import bprop
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
def stop_func(x, y):
""" stop_func"""
5 years ago
c = x * y
c_s = x + y
return c_s, c
5 years ago
def stop_test1(x, y):
""" stop_test1 """
5 years ago
c = x * y
c_s = stop_gradient(c)
return c_s
5 years ago
def stop_test2(x, y):
""" stop_test2 """
5 years ago
c = x * y
c_s = stop_gradient(c)
5 years ago
d = c_s + x * y
return d * y
5 years ago
def stop_test3(x, y):
""" stop_test3 """
5 years ago
x = x * y
z = stop_test1(x, y)
k = z * y
return k
5 years ago
def stop_test5(x, y):
""" stop_test3 """
5 years ago
x = x + y
o1, o2 = stop_func(x, y)
c = stop_gradient(o1)
5 years ago
c = o2 + c
return c
5 years ago
def stop_test4(x, y):
""" stop_test4 """
c = x + y
c_s = stop_gradient(c)
e = c + c_s
return e
5 years ago
def grad_stop_test(x, y):
""" grad_stop_test """
return C.grad_all(stop_test2)(x, y)
5 years ago
def grad_stop_test1(x, y):
""" grad_stop_test1 """
return C.grad_all(stop_test3)(x, y)
5 years ago
def test_stop():
""" test_stop """
print("test_stop:", grad_stop_test(1, 1))
5 years ago
def test_stop1():
""" test_stop1 """
print("test_stop1:", grad_stop_test1(2, 3))
5 years ago
def test_stop5():
""" test_stop1 """
print("test_stop5:", C.grad_all(stop_test5)(2, 3))
5 years ago
class GradWrap(nn.Cell):
""" GradWrap definition """
5 years ago
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
self.weights = ParameterTuple(network.get_parameters())
@ms_function
def construct(self, x, label):
weights = self.weights
return C.grad_by_list(self.network, weights)(x, label)
@non_graph_engine
def test_softmaxloss_grad():
""" test_softmaxloss_grad """
5 years ago
class NetWithLossClass(nn.Cell):
""" NetWithLossClass definition """
5 years ago
def __init__(self, network):
super(NetWithLossClass, self).__init__()
self.loss = nn.SoftmaxCrossEntropyWithLogits()
self.network = network
@ms_function
def construct(self, x, label):
predict = self.network(x)
return self.loss(predict, label)
class Net(nn.Cell):
""" Net definition """
5 years ago
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10])), name="weight")
self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name="bias")
self.fc = P.MatMul()
self.fc2 = nn.Dense(10, 10)
self.biasAdd = P.BiasAdd()
self.relu = nn.ReLU()
self.cast = P.Cast()
@ms_function
def construct(self, x):
x = self.fc(x, self.weight)
x = self.cast(x, mstype.float32)
x = self.relu(self.fc2(x))
x = self.fc2(x)
x = stop_gradient(x)
x = self.biasAdd(x, self.bias)
return x
net = GradWrap(NetWithLossClass(Net()))
predict = Tensor(np.ones([1, 64]))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
print("pynative run")
out = net(predict, label)
print("out:", out)
5 years ago
def test_stop_gradient_1():
class Mul(nn.Cell):
def __init__(self):
super(Mul, self).__init__()
@ms_function
def construct(self, x, y):
ret = x * y
ret = stop_gradient(ret)
return ret
5 years ago
dx, dy = bprop(Mul(), Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)), wrt=['inputs'])
expect = np.zeros([2, 2])
assert (dx.asnumpy() == expect).all()
assert (dy.asnumpy() == expect).all()
5 years ago
def test_stop_gradient_2():
class Mul(nn.Cell):
def __init__(self):
super(Mul, self).__init__()
@ms_function
def construct(self, x, y):
c = x * y
z = x * y
return c, z
5 years ago
class MulAdd(nn.Cell):
def __init__(self):
super(MulAdd, self).__init__()
self.mul = Mul()
@ms_function
def construct(self, x, y):
u = x + y
v = x - y
c, z = self.mul(u, v)
c = stop_gradient(c)
ret1 = c + x + y
ret2 = z + y + y
return ret1, ret2
5 years ago
dx = bprop(MulAdd(), Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
expect = np.array([[3.0, 3.0], [3.0, 3.0]])
assert (dx.asnumpy() == expect).all()
5 years ago
def test_stop_gradient_3():
class TupleGetItem(nn.Cell):
def __init__(self):
super(TupleGetItem, self).__init__()
@ms_function
def construct(self, x1, x2, x3, x4, x5):
z1 = x1 + x1
z2 = x1 * x2
t = (z1, z2, x3, x4, x5)
z2 = t[1]
z2 = stop_gradient(z2)
return z1, z2, x3, x4, x5
5 years ago
dx = bprop(TupleGetItem(),
5 years ago
Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))
expect = np.array([[2.0, 2.0], [2.0, 2.0]])
assert (dx.asnumpy() == expect).all()
5 years ago
def test_stop_gradient_4():
def stop_test(x):
return stop_gradient(x)
5 years ago
assert C.grad_all(stop_test)(1) == (0,)
5 years ago
def test_stop_gradient_5():
def stop_test(x):
y = x + x
y = stop_gradient(y)
ret = x + y
return ret
5 years ago
assert C.grad_all(stop_test)(1) == (1,)
5 years ago
def test_stop_gradient_6():
def stop_test(x, y):
ret = x * y
ret = stop_gradient(ret)
return ret
5 years ago
assert C.grad_all(stop_test)(1, 3) == (0, 0)
5 years ago
class PrimWithMultiOutputs(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
"""init"""
5 years ago
def __call__(self, x, y):
"""Implement by vm mode."""
return x, y
5 years ago
def infer_shape(self, x_shape, y_shape):
return x_shape, y_shape
5 years ago
def infer_dtype(self, x_type, y_type):
return x_type, y_type
5 years ago
def get_bprop(self):
def bprop(x, y, out, dout):
return (dout[0], dout[1])
5 years ago
return bprop
5 years ago
def test_stop_gradient_7():
class PrimWithMultiOutputs_(nn.Cell):
def __init__(self):
super(PrimWithMultiOutputs_, self).__init__()
self.prim_with_multi_outputs = PrimWithMultiOutputs()
@ms_function
def construct(self, x1, x2):
x1, x2 = self.prim_with_multi_outputs(x1, x2)
x1 = stop_gradient(x1)
return x1, x2
5 years ago
dx, dy = bprop(PrimWithMultiOutputs_(), Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)), wrt=['inputs'])
expect_dx = np.zeros([2])
expect_dy = np.ones([2])
assert (dx.asnumpy() == expect_dx).all()
assert (dy.asnumpy() == expect_dy).all()
5 years ago
def test_stop_gradient_8():
class PrimWithMultiOutputs_(nn.Cell):
def __init__(self):
super(PrimWithMultiOutputs_, self).__init__()
self.prim_with_multi_output = PrimWithMultiOutputs()
@ms_function
def construct(self, x1, x2):
x1, x2 = stop_gradient(self.prim_with_multi_output(x1, x2))
return x1, x2
5 years ago
dx, dy = bprop(PrimWithMultiOutputs_(), Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)), wrt=['inputs'])
expect_dx = np.zeros([2])
expect_dy = np.zeros([2])
assert (dx.asnumpy() == expect_dx).all()
assert (dy.asnumpy() == expect_dy).all()
5 years ago
def test_stop_gradient_9():
class Mul(nn.Cell):
def __init__(self):
super(Mul, self).__init__()
@ms_function
def construct(self, x, y):
c = x * y
z = x * y
return c, z
5 years ago
class MulAdd(nn.Cell):
def __init__(self):
super(MulAdd, self).__init__()
self.mul = Mul()
@ms_function
def construct(self, x, y):
u = x + y
v = x - y
c, z = self.mul(u, v)
c1 = stop_gradient(c)
c2 = c
ret1 = c1 + x + y + c2
ret2 = z + y + y
return ret1, ret2
5 years ago
dx = bprop(MulAdd(), Tensor(np.ones([2, 2]).astype(np.float32)),
5 years ago
Tensor(np.ones([2, 2]).astype(np.float32)))
expect = np.array([[5.0, 5.0], [5.0, 5.0]])
assert (dx.asnumpy() == expect).all()
5 years ago
class PrimWithNoBprop(PrimitiveWithInfer):
@prim_attr_register
def __init__(self):
"""init"""
5 years ago
def __call__(self, x, y):
"""Implement by vm mode."""
return x, y
5 years ago
def infer_shape(self, x_shape, y_shape):
return x_shape, y_shape
5 years ago
def infer_dtype(self, x_type, y_type):
return x_type, y_type
5 years ago
def test_stop_gradient_10():
class PrimWithNoBprop_(nn.Cell):
def __init__(self):
super(PrimWithNoBprop_, self).__init__()
self.prim_with_no_bprop = PrimWithNoBprop()
@ms_function
def construct(self, x, y):
x = x * y
x, y = self.prim_with_no_bprop(x, y)
x = stop_gradient(x)
y = stop_gradient(y)
return x, y
5 years ago
dx = bprop(PrimWithNoBprop_(), Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))
expect_dx = np.zeros([2])
assert (dx.asnumpy() == expect_dx).all()
5 years ago
def test_stop_gradient_11():
class PrimWithNoBprop_(nn.Cell):
def __init__(self):
super(PrimWithNoBprop_, self).__init__()
self.prim_with_no_bprop = PrimWithNoBprop()
@ms_function
def construct(self, x, y):
x, y = self.prim_with_no_bprop(x, y)
x = stop_gradient(x)
return x, y
5 years ago
with pytest.raises(RuntimeError):
bprop(PrimWithNoBprop_(), Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))
5 years ago
def test_stop_print():
class StopPrint(nn.Cell):
def __init__(self):
super(StopPrint, self).__init__()
self.printm = P.Print()
5 years ago
def construct(self, x, y):
self.printm("StopPrint", x)
self.printm(y)
return x, y
5 years ago
C.grad_all(StopPrint())(Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))