You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/metrics/test_accuracy.py

79 lines
2.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test accuracy"""
import math
import numpy as np
import pytest
from mindspore.nn.metrics import Accuracy
from mindspore import Tensor
def test_classification_accuracy():
"""test_classification_accuracy"""
x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
y = Tensor(np.array([1, 0, 1]))
y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
metric = Accuracy('classification')
metric.clear()
metric.update(x, y)
accuracy = metric.eval()
accuracy2 = metric(x, y2)
assert math.isclose(accuracy, 2/3)
assert math.isclose(accuracy2, 2/3)
def test_multilabel_accuracy():
x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]]))
metric = Accuracy('multilabel')
metric.clear()
metric.update(x, y)
accuracy = metric.eval()
assert accuracy == 1/3
def test_shape_accuracy():
x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1]]))
metric = Accuracy('multilabel')
metric.clear()
with pytest.raises(ValueError):
metric.update(x, y)
def test_shape_accuracy2():
x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
y = Tensor(np.array([0, 1, 1, 1]))
metric = Accuracy('multilabel')
metric.clear()
with pytest.raises(ValueError):
metric.update(x, y)
def test_shape_accuracy3():
x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
y = Tensor(np.array([[1, 0, 1], [1, 1, 1]]))
metric = Accuracy('classification')
metric.clear()
with pytest.raises(ValueError):
metric.update(x, y)
def test_shape_accuracy4():
x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
y = Tensor(np.array(1))
metric = Accuracy('classification')
metric.clear()
with pytest.raises(ValueError):
metric.update(x, y)
def test_type_accuracy():
with pytest.raises(TypeError):
Accuracy('test')