You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.3 KiB
186 lines
6.3 KiB
4 years ago
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ============================================================================
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import mindspore.context as context
|
||
|
from mindspore.common.tensor import Tensor
|
||
|
from mindspore.nn import Cell
|
||
|
from mindspore.ops import operations as P
|
||
|
|
||
|
|
||
|
class ConstScalarAndTensorMinimum(Cell):
|
||
|
def __init__(self):
|
||
|
super(ConstScalarAndTensorMinimum, self).__init__()
|
||
|
self.min = P.Minimum()
|
||
|
self.x = 20
|
||
|
|
||
|
def construct(self, y):
|
||
|
return self.min(self.x, y)
|
||
|
|
||
|
|
||
|
class TwoTensorsMinimum(Cell):
|
||
|
def __init__(self):
|
||
|
super(TwoTensorsMinimum, self).__init__()
|
||
|
self.min = P.Minimum()
|
||
|
|
||
|
def construct(self, x, y):
|
||
|
return self.min(x, y)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_constScalar_tensor_int():
|
||
|
x = Tensor(np.array([[2, 3, 4], [100, 200, 300]]).astype(np.int32))
|
||
|
expect = [[2, 3, 4], [20, 20, 20]]
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = ConstScalarAndTensorMinimum()
|
||
|
output = min_op(x)
|
||
|
assert np.all(output.asnumpy() == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_two_tensors_Not_Broadcast_int():
|
||
|
prop = 100 if np.random.random() > 0.5 else -100
|
||
|
x = np.random.randn(3, 4, 5).astype(np.int32) * prop
|
||
|
y = np.random.randn(3, 4, 5).astype(np.int32) * prop
|
||
|
expect = np.minimum(x, y).astype(np.int32)
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = TwoTensorsMinimum()
|
||
|
output = min_op(Tensor(x), Tensor(y))
|
||
|
assert np.all(output.asnumpy() == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_two_tensors_Broadcast_int():
|
||
|
prop = 100 if np.random.random() > 0.5 else -100
|
||
|
x = np.random.randn(3, 4, 5).astype(np.int32) * prop
|
||
|
y = np.random.randn(3, 1, 1).astype(np.int32) * prop
|
||
|
expect = np.minimum(x, y).astype(np.int32)
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = TwoTensorsMinimum()
|
||
|
output = min_op(Tensor(x), Tensor(y))
|
||
|
assert np.all(output.asnumpy() == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_two_tensors_Broadcast_oneDimension_int():
|
||
|
prop = 100 if np.random.random() > 0.5 else -100
|
||
|
x = np.random.randn(3).astype(np.int32) * prop
|
||
|
y = np.random.randn(3).astype(np.int32) * prop
|
||
|
expect = np.minimum(x, y).astype(np.int32)
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = TwoTensorsMinimum()
|
||
|
output = min_op(Tensor(x), Tensor(y))
|
||
|
assert np.all(output.asnumpy() == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_two_tensors_notBroadcast_all_oneDimension_int():
|
||
|
x = Tensor(np.array([[2]]).astype(np.int32))
|
||
|
y = Tensor(np.array([[100]]).astype(np.int32))
|
||
|
expect = [[2]]
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = TwoTensorsMinimum()
|
||
|
output = min_op(x, y)
|
||
|
assert np.all(output.asnumpy() == expect)
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_two_tensors_notBroadcast_float32():
|
||
|
prop = 100 if np.random.random() > 0.5 else -100
|
||
|
x = np.random.randn(3, 4, 5).astype(np.float32) * prop
|
||
|
y = np.random.randn(3, 4, 5).astype(np.float32) * prop
|
||
|
expect = np.minimum(x, y).astype(np.float32)
|
||
|
error = np.ones(shape=expect.shape) * 1.0e-5
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = TwoTensorsMinimum()
|
||
|
output = min_op(Tensor(x), Tensor(y))
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(np.abs(diff) < error)
|
||
|
assert output.shape == expect.shape
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_two_tensors_notBroadcast_float16():
|
||
|
prop = 100 if np.random.random() > 0.5 else -100
|
||
|
x = np.random.randn(3, 4, 5).astype(np.float16) * prop
|
||
|
y = np.random.randn(3, 4, 5).astype(np.float16) * prop
|
||
|
expect = np.minimum(x, y).astype(np.float16)
|
||
|
error = np.ones(shape=expect.shape) * 1.0e-5
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = TwoTensorsMinimum()
|
||
|
output = min_op(Tensor(x), Tensor(y))
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(np.abs(diff) < error)
|
||
|
assert output.shape == expect.shape
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_two_tensors_Broadcast_float16():
|
||
|
prop = 100 if np.random.random() > 0.5 else -100
|
||
|
x = np.random.randn(3, 4, 5).astype(np.float16) * prop
|
||
|
y = np.random.randn(3, 4, 1).astype(np.float16) * prop
|
||
|
expect = np.minimum(x, y).astype(np.float16)
|
||
|
error = np.ones(shape=expect.shape) * 1.0e-5
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = TwoTensorsMinimum()
|
||
|
output = min_op(Tensor(x), Tensor(y))
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(np.abs(diff) < error)
|
||
|
assert output.shape == expect.shape
|
||
|
|
||
|
|
||
|
@pytest.mark.level0
|
||
|
@pytest.mark.platform_x86_cpu_training
|
||
|
@pytest.mark.env_onecard
|
||
|
def test_minimum_two_tensors_notBroadcast_float64():
|
||
|
prop = 100 if np.random.random() > 0.5 else -100
|
||
|
x = np.random.randn(3, 4, 1).astype(np.float64) * prop
|
||
|
y = np.random.randn(3, 4, 5).astype(np.float64) * prop
|
||
|
expect = np.minimum(x, y).astype(np.float64)
|
||
|
error = np.ones(shape=expect.shape) * 1.0e-5
|
||
|
|
||
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||
|
min_op = TwoTensorsMinimum()
|
||
|
output = min_op(Tensor(x), Tensor(y))
|
||
|
diff = output.asnumpy() - expect
|
||
|
assert np.all(np.abs(diff) < error)
|
||
|
assert output.shape == expect.shape
|