|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
|
|
from mindspore import context, nn, Tensor, Parameter, ParameterTuple
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
from mindspore.ops import composite as C
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(scope="module", autouse=True)
|
|
|
|
def setup_teardown():
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
|
|
|
yield
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
|
|
|
|
|
|
class _Grad(nn.Cell):
|
|
|
|
def __init__(self, grad, network, wrt_params=False, real_inputs_count=None):
|
|
|
|
super().__init__()
|
|
|
|
self.network = network
|
|
|
|
self.grad = grad
|
|
|
|
self.sens_param = self.grad.sens_param
|
|
|
|
self.wrt_params = wrt_params
|
|
|
|
self.real_inputs_count = real_inputs_count
|
|
|
|
if self.wrt_params:
|
|
|
|
self.params = ParameterTuple(self.network.trainable_params())
|
|
|
|
|
|
|
|
def construct(self, *inputs):
|
|
|
|
if self.wrt_params:
|
|
|
|
if self.real_inputs_count is None or self.sens_param is False:
|
|
|
|
return self.grad(self.network, self.params)(*inputs)
|
|
|
|
real_inputs = inputs[:self.real_inputs_count]
|
|
|
|
sense_param_inputs = inputs[self.real_inputs_count:]
|
|
|
|
return self.grad(self.network, self.params)(*real_inputs, sense_param_inputs)
|
|
|
|
|
|
|
|
if self.real_inputs_count is None or self.sens_param is False:
|
|
|
|
return self.grad(self.network)(*inputs)
|
|
|
|
real_inputs = inputs[:self.real_inputs_count]
|
|
|
|
sense_param_inputs = inputs[self.real_inputs_count:]
|
|
|
|
return self.grad(self.network)(*real_inputs, sense_param_inputs)
|
|
|
|
|
|
|
|
|
|
|
|
class GradOfFirstInput(_Grad):
|
|
|
|
"""
|
|
|
|
get grad of first input
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, network, sens_param=True, real_inputs_count=None):
|
|
|
|
super().__init__(grad=C.GradOperation(sens_param=sens_param),
|
|
|
|
network=network, real_inputs_count=real_inputs_count)
|
|
|
|
|
|
|
|
|
|
|
|
class GradOfAllInputs(_Grad):
|
|
|
|
"""
|
|
|
|
get grad of first input
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, network, sens_param=True, real_inputs_count=None):
|
|
|
|
super().__init__(grad=C.GradOperation(get_all=True, sens_param=sens_param),
|
|
|
|
network=network, real_inputs_count=real_inputs_count)
|
|
|
|
|
|
|
|
|
|
|
|
def test_multi_grad():
|
|
|
|
class ForwardNetMul(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
a = x * x
|
|
|
|
b = y * y
|
|
|
|
return a * b
|
|
|
|
|
|
|
|
class ForwardNetAdd(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
a = x + x + x
|
|
|
|
b = y + y
|
|
|
|
return a * b
|
|
|
|
mulnet = ForwardNetMul()
|
|
|
|
addnet = ForwardNetAdd()
|
|
|
|
x = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([32])*2, dtype=mstype.float32)
|
|
|
|
sens = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
mulnet.set_grad()
|
|
|
|
addnet.set_grad()
|
|
|
|
out1 = mulnet(x, y)
|
|
|
|
out2 = addnet(x, y)
|
|
|
|
grad_mul = GradOfAllInputs(mulnet)
|
|
|
|
grad_add = GradOfAllInputs(addnet)
|
|
|
|
grad_mul(x, y, sens)
|
|
|
|
grad_add(x, y, sens)
|
|
|
|
|
|
|
|
|
|
|
|
def test_multi_same_grad():
|
|
|
|
class ForwardNetMul(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
a = x * x
|
|
|
|
b = y * y
|
|
|
|
return a * b
|
|
|
|
|
|
|
|
class ForwardNetAdd(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
a = x*3
|
|
|
|
b = y*2
|
|
|
|
return a + b
|
|
|
|
mulnet = ForwardNetMul()
|
|
|
|
addnet = ForwardNetAdd()
|
|
|
|
x = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
sens = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
mulnet.set_grad()
|
|
|
|
addnet.set_grad()
|
|
|
|
out1 = mulnet(x, y)
|
|
|
|
out2 = addnet(x, y)
|
|
|
|
grad_mul = GradOfAllInputs(mulnet)
|
|
|
|
grad_add = GradOfFirstInput(mulnet)
|
|
|
|
grad_mul(x, y, sens)
|
|
|
|
grad_add(x, y, sens)
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_inner_grad():
|
|
|
|
class ForwardNetMul(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
a = x * x
|
|
|
|
b = y * y
|
|
|
|
return a * b
|
|
|
|
|
|
|
|
class ForwardNetAdd(nn.Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super().__init__()
|
|
|
|
self.net = net
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
a = x + x
|
|
|
|
b = y + y
|
|
|
|
res = self.net(a, b)
|
|
|
|
return res
|
|
|
|
mulnet = ForwardNetMul()
|
|
|
|
addnet = ForwardNetAdd(mulnet)
|
|
|
|
x = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
sens = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
mulnet.set_grad()
|
|
|
|
addnet.set_grad()
|
|
|
|
out1 = mulnet(x, y)
|
|
|
|
out2 = addnet(x, y)
|
|
|
|
grad_mul = GradOfAllInputs(addnet)
|
|
|
|
grad_add = GradOfAllInputs(mulnet)
|
|
|
|
grad_mul(x, y, sens)
|
|
|
|
grad_add(x, y, sens)
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_inner_first_run_grad():
|
|
|
|
class ForwardNetMul(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.z1 = Parameter(Tensor(np.ones([32])*2, dtype=mstype.float32), name='z1')
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
a = x * self.z1
|
|
|
|
b = y * y
|
|
|
|
return a * b
|
|
|
|
|
|
|
|
class ForwardNetAdd(nn.Cell):
|
|
|
|
def __init__(self, net):
|
|
|
|
super().__init__()
|
|
|
|
self.net = net
|
|
|
|
self.z2 = Parameter(Tensor(np.ones([32]), dtype=mstype.float32), name='z2')
|
|
|
|
self.z3 = Parameter(Tensor(np.ones([32]), dtype=mstype.float32), name='z2')
|
|
|
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
a = x + x*self.z3
|
|
|
|
b = y + y*self.z2
|
|
|
|
res = self.net(a, b)
|
|
|
|
return res
|
|
|
|
mulnet = ForwardNetMul()
|
|
|
|
addnet = ForwardNetAdd(mulnet)
|
|
|
|
x = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
y = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
sens = Tensor(np.ones([32]), dtype=mstype.float32)
|
|
|
|
mulnet.set_grad()
|
|
|
|
addnet.set_grad()
|
|
|
|
out1 = mulnet(x, y)
|
|
|
|
out2 = addnet(x, y)
|
|
|
|
grad_mul = GradOfAllInputs(addnet)
|
|
|
|
grad_add = GradOfFirstInput(mulnet)
|
|
|
|
grad_mul(x, y, sens)
|
|
|
|
grad_add(x, y, sens)
|