You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_matmul_dropout.py

132 lines
4.4 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
5 years ago
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
5 years ago
from mindspore import context
4 years ago
import mindspore.common.dtype as mstype
from mindspore.common.seed import _get_graph_seed
from mindspore.common.api import _executor
4 years ago
from mindspore._checkparam import Validator
from mindspore.ops.primitive import constexpr
from mindspore.ops import composite as C
5 years ago
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b):
return grad_all(self.network)(x, y, b)
4 years ago
@constexpr
def _is_float_dtype(dtype):
if dtype in [mstype.float32, mstype.float16]:
return True
return False
class Dropout(nn.Cell):
def __init__(self, keep_prob=0.5, dtype=mstype.float32):
super(Dropout, self).__init__()
if keep_prob <= 0 or keep_prob > 1:
raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob))
Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name)
self.keep_prob = keep_prob
seed0, seed1 = _get_graph_seed(0, "dropout")
self.seed0 = seed0
self.seed1 = seed1
self.dtype = dtype
self.get_shape = P.Shape()
self.dropout_gen_mask = P.DropoutGenMask(Seed0=self.seed0, Seed1=self.seed1)
self.dropout_do_mask = P.DropoutDoMask()
self.cast = P.Cast()
self.is_gpu = context.get_context('device_target') in ["GPU"]
self.dropout = P.Dropout(keep_prob)
def construct(self, x):
if not self.training:
return x
if self.is_gpu:
out, _ = self.dropout(x)
return out
if self.keep_prob == 1:
return x
shape = self.get_shape(x)
dtype = P.DType()(x)
if _is_float_dtype(dtype):
keep_prob = self.cast(self.keep_prob, dtype)
else:
keep_prob = self.cast(self.keep_prob, mstype.float16)
output = self.dropout_gen_mask(shape, keep_prob)
return self.dropout_do_mask(x, output, keep_prob)
def extend_repr(self):
return 'keep_prob={}, dtype={}'.format(self.keep_prob, self.dtype)
# model_parallel test
def test_two_matmul_dropout():
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3):
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
4 years ago
self.dropout = Dropout()
self.dropout.dropout_do_mask.shard(strategy2)
self.dropout.dropout_gen_mask.shard(strategy2)
self.matmul2 = P.MatMul().shard(strategy3)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.dropout(out)
out = self.matmul2(out, b)
return out
context.set_auto_parallel_context(device_num=8, global_rank=0)
strategy1 = ((4, 2), (2, 1))
5 years ago
strategy2 = ((8, 1),)
strategy3 = ((1, 8), (8, 1))
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
net.set_auto_parallel()
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
net.set_train()
_executor.compile(net, x, y, b)