You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_random_vertical_flip.py

101 lines
3.2 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the random vertical flip op in DE
"""
import matplotlib.pyplot as plt
import numpy as np
import mindspore.dataset as ds
5 years ago
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def v_flip(image):
"""
Apply the random_vertical
"""
# with the seed provided in this test case, it will always flip.
# that's why we flip here too
image = image[::-1, :, :]
return image
def visualize(image_de_random_vertical, image_pil_random_vertical, mse, image_original):
"""
visualizes the image using DE op and Numpy op
"""
plt.subplot(141)
plt.imshow(image_original)
plt.title("Original image")
plt.subplot(142)
plt.imshow(image_de_random_vertical)
plt.title("DE random_vertical image")
plt.subplot(143)
plt.imshow(image_pil_random_vertical)
plt.title("vertically flipped image")
plt.subplot(144)
plt.imshow(image_de_random_vertical - image_pil_random_vertical)
plt.title("Difference image, mse : {}".format(mse))
plt.show()
def test_random_vertical_op():
"""
Test random_vertical
"""
logger.info("Test random_vertical")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
random_vertical_op = vision.RandomVerticalFlip()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_vertical_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
# with the seed value, we can only guarantee the first number generated
if num_iter > 0:
break
image_v_flipped = item1["image"]
image = item2["image"]
image_v_flipped_2 = v_flip(image)
diff = image_v_flipped - image_v_flipped_2
mse = np.sum(np.power(diff, 2))
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
# Uncomment below line if you want to visualize images
# visualize(image_v_flipped, image_v_flipped_2, mse, image)
num_iter += 1
if __name__ == "__main__":
test_random_vertical_op()