You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.2 KiB
101 lines
3.2 KiB
5 years ago
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""
|
||
|
Testing the random vertical flip op in DE
|
||
|
"""
|
||
|
import matplotlib.pyplot as plt
|
||
|
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||
|
import numpy as np
|
||
|
|
||
|
import mindspore.dataset as ds
|
||
|
from mindspore import log as logger
|
||
|
|
||
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
||
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||
|
|
||
|
|
||
|
def v_flip(image):
|
||
|
"""
|
||
|
Apply the random_vertical
|
||
|
"""
|
||
|
|
||
|
# with the seed provided in this test case, it will always flip.
|
||
|
# that's why we flip here too
|
||
|
image = image[::-1, :, :]
|
||
|
return image
|
||
|
|
||
|
|
||
|
def visualize(image_de_random_vertical, image_pil_random_vertical, mse, image_original):
|
||
|
"""
|
||
|
visualizes the image using DE op and Numpy op
|
||
|
"""
|
||
|
plt.subplot(141)
|
||
|
plt.imshow(image_original)
|
||
|
plt.title("Original image")
|
||
|
|
||
|
plt.subplot(142)
|
||
|
plt.imshow(image_de_random_vertical)
|
||
|
plt.title("DE random_vertical image")
|
||
|
|
||
|
plt.subplot(143)
|
||
|
plt.imshow(image_pil_random_vertical)
|
||
|
plt.title("vertically flipped image")
|
||
|
|
||
|
plt.subplot(144)
|
||
|
plt.imshow(image_de_random_vertical - image_pil_random_vertical)
|
||
|
plt.title("Difference image, mse : {}".format(mse))
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def test_random_vertical_op():
|
||
|
"""
|
||
|
Test random_vertical
|
||
|
"""
|
||
|
logger.info("Test random_vertical")
|
||
|
|
||
|
# First dataset
|
||
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||
|
decode_op = vision.Decode()
|
||
|
random_vertical_op = vision.RandomVerticalFlip()
|
||
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||
|
data1 = data1.map(input_columns=["image"], operations=random_vertical_op)
|
||
|
|
||
|
# Second dataset
|
||
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||
|
data2 = data2.map(input_columns=["image"], operations=decode_op)
|
||
|
|
||
|
num_iter = 0
|
||
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||
|
|
||
|
# with the seed value, we can only guarantee the first number generated
|
||
|
if num_iter > 0:
|
||
|
break
|
||
|
|
||
|
image_v_flipped = item1["image"]
|
||
|
|
||
|
image = item2["image"]
|
||
|
image_v_flipped_2 = v_flip(image)
|
||
|
|
||
|
diff = image_v_flipped - image_v_flipped_2
|
||
|
mse = np.sum(np.power(diff, 2))
|
||
|
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
|
||
|
# Uncomment below line if you want to visualize images
|
||
|
# visualize(image_v_flipped, image_v_flipped_2, mse, image)
|
||
|
num_iter += 1
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_random_vertical_op()
|