You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/yolov3_resnet18/README.md

242 lines
12 KiB

# Contents
- [YOLOv3_ResNet18 Description](#yolov3_resnet18-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Training](#training)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
- [Inference Performance](#evaluation-performance)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [YOLOv3_ResNet18 Description](#contents)
YOLOv3 network based on ResNet-18, with support for training and evaluation.
[Paper](https://arxiv.org/abs/1804.02767): Joseph Redmon, Ali Farhadi. arXiv preprint arXiv:1804.02767, 2018. 2, 4, 7, 11.
# [Model Architecture](#contents)
The overall network architecture of YOLOv3 is show below:
And we use ResNet18 as the backbone of YOLOv3_ResNet18. The architecture of ResNet18 has 4 stages. The ResNet architecture performs the initial convolution and max-pooling using 7×7 and 3×3 kernel sizes respectively. Afterward, every stage of the network has different Residual blocks (2, 2, 2, 2) containing two 3×3 conv layers. Finally, the network has an Average Pooling layer followed by a fully connected layer.
# [Dataset](#contents)
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
Dataset used: [COCO2017](<http://images.cocodataset.org/>)
- Dataset size19G
- Train18G118000 images
- Val1G5000 images
- Annotations241Minstancescaptionsperson_keypoints etc
- Data formatimage and json files
- NoteData will be processed in dataset.py
- Dataset
1. The directory structure is as follows:
```
.
├── annotations # annotation jsons
├── train2017 # train dataset
└── val2017 # infer dataset
```
2. Organize the dataset infomation into a TXT file, each row in the file is as follows:
```
train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
```
Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. `dataset.py` is the parsing script, we read image from an image path joined by the `image_dir`(dataset directory) and the relative path in `anno_path`(the TXT file path), `image_dir` and `anno_path` are external inputs.
# [Environment Requirements](#contents)
- HardwareAscend
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Quick Start](#contents)
After installing MindSpore via the official website, you can start training and evaluation on Ascend as follows:
- runing on Ascend
```shell script
#run standalone training example
sh run_standalone_train.sh [DEVICE_ID] [EPOCH_SIZE] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH]
#run distributed training example
sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH] [RANK_TABLE_FILE]
#run evaluation example
sh run_eval.sh [DEVICE_ID] [CKPT_PATH] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH]
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```
5 years ago
└── cv
├── README.md // descriptions about all the models
├── mindspore_hub_conf.md // config for mindspore hub
└── yolov3_resnet18
├── README.md // descriptions about yolov3_resnet18
├── scripts
├── run_distribute_train.sh // shell script for distributed on Ascend
├── run_standalone_train.sh // shell script for distributed on Ascend
└── run_eval.sh // shell script for evaluation on Ascend
├── src
├── dataset.py // creating dataset
├── yolov3.py // yolov3 architecture
├── config.py // parameter configuration
└── utils.py // util function
├── train.py // training script
└── eval.py // evaluation script
```
## [Script Parameters](#contents)
```
Major parameters in train.py and config.py as follows:
device_num: Use device nums, default is 1.
lr: Learning rate, default is 0.001.
epoch_size: Epoch size, default is 50.
batch_size: Batch size, default is 32.
pre_trained: Pretrained Checkpoint file path.
pre_trained_epoch_size: Pretrained epoch size.
mindrecord_dir: Mindrecord directory.
image_dir: Dataset path.
anno_path: Annotation path.
img_shape: Image height and width used as input to the model.
```
## [Training Process](#contents)
### Training on Ascend
4 years ago
To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.**
- Stand alone mode
```
sh run_standalone_train.sh 0 50 ./Mindrecord_train ./dataset ./dataset/train.txt
```
The input variables are device id, epoch size, mindrecord directory path, dataset directory path and train TXT file path.
- Distributed mode
```
sh run_distribute_train.sh 8 150 /data/Mindrecord_train /data /data/train.txt /data/hccl.json
```
The input variables are device numbers, epoch size, mindrecord directory path, dataset directory path, train TXT file path and [hccl json configuration file](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). **It is better to use absolute path.**
You will get the loss value and time of each step as following:
```
epoch: 145 step: 156, loss is 12.202981
epoch time: 25599.22742843628, per step time: 164.0976117207454
epoch: 146 step: 156, loss is 16.91706
epoch time: 23199.971675872803, per step time: 148.7177671530308
epoch: 147 step: 156, loss is 13.04007
epoch time: 23801.95164680481, per step time: 152.57661312054364
epoch: 148 step: 156, loss is 10.431475
epoch time: 23634.241580963135, per step time: 151.50154859591754
epoch: 149 step: 156, loss is 14.665991
epoch time: 24118.8325881958, per step time: 154.60790120638333
epoch: 150 step: 156, loss is 10.779521
epoch time: 25319.57221031189, per step time: 162.30495006610187
```
Note the results is two-classification(person and face) used our own annotations with coco2017, you can change `num_classes` in `config.py` to train your dataset. And we will suport 80 classifications in coco2017 the near future.
## [Evaluation Process](#contents)
### Evaluation on Ascend
To eval, run `eval.py` with the dataset `image_dir`, `anno_path`(eval txt), `mindrecord_dir` and `ckpt_path`. `ckpt_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/training/en/master/use/save_model.html) file.
```
sh run_eval.sh 0 yolo.ckpt ./Mindrecord_eval ./dataset ./dataset/eval.txt
```
The input variables are device id, checkpoint path, mindrecord directory path, dataset directory path and train TXT file path.
You will get the precision and recall value of each class:
```
class 0 precision is 88.18%, recall is 66.00%
class 1 precision is 85.34%, recall is 79.13%
```
Note the precision and recall values are results of two-classification(person and face) used our own annotations with coco2017.
# [Model Description](#contents)
## [Performance](#contents)
### Evaluation Performance
| Parameters | Ascend |
| -------------------------- | ----------------------------------------------------------- |
5 years ago
| Model Version | YOLOv3_Resnet18 V1 |
| Resource | Ascend 910 CPU 2.60GHz192coresMemory755G |
| uploaded Date | 09/15/2020 (month/day/year) |
| MindSpore Version | 1.0.0 |
| Dataset | COCO2017 |
| Training Parameters | epoch = 150, batch_size = 32, lr = 0.001 |
| Optimizer | Adam |
| Loss Function | Sigmoid Cross Entropy |
| outputs | probability |
| Speed | 1pc: 120 ms/step; 8pcs: 160 ms/step |
| Total time | 1pc: 150 mins; 8pcs: 70 mins |
| Parameters (M) | 189 |
| Scripts | [yolov3_resnet18 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18) | [yolov3_resnet18 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18) |
### Inference Performance
| Parameters | Ascend |
| ------------------- | ----------------------------------------------- |
| Model Version | YOLOv3_Resnet18 V1 |
| Resource | Ascend 910 |
| Uploaded Date | 09/15/2020 (month/day/year) |
| MindSpore Version | 1.0.0 |
| Dataset | COCO2017 |
| batch_size | 1 |
| outputs | presion and recall |
| Accuracy | class 0: 88.18%/66.00%; class 1: 85.34%/79.13% |
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).