[查看中文 ](./README_CN.md )
# Contents
- [LSTM Description ](#lstm-description )
- [Model Architecture ](#model-architecture )
- [Dataset ](#dataset )
- [Environment Requirements ](#environment-requirements )
- [Quick Start ](#quick-start )
- [Script Description ](#script-description )
- [Script and Sample Code ](#script-and-sample-code )
- [Script Parameters ](#script-parameters )
- [Dataset Preparation ](#dataset-preparation )
- [Training Process ](#training-process )
- [Evaluation Process ](#evaluation-process )
- [Model Description ](#model-description )
- [Performance ](#performance )
- [Training Performance ](#training-performance )
- [Evaluation Performance ](#evaluation-performance )
- [Description of Random Situation ](#description-of-random-situation )
- [ModelZoo Homepage ](#modelzoo-homepage )
# [LSTM Description](#contents)
This example is for LSTM model training and evaluation.
[Paper ](https://www.aclweb.org/anthology/P11-1015/ ): Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, Christopher Potts. [Learning Word Vectors for Sentiment Analysis ](https://www.aclweb.org/anthology/P11-1015/ ). Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011
# [Model Architecture](#contents)
LSTM contains embeding, encoder and decoder modules. Encoder module consists of LSTM layer. Decoder module consists of fully-connection layer.
# [Dataset](#contents)
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
- aclImdb_v1 for training evaluation.[Large Movie Review Dataset](http://ai.stanford.edu/~amaas/data/sentiment/)
- GloVe: Vector representations for words.[GloVe: Global Vectors for Word Representation](https://nlp.stanford.edu/projects/glove/)
# [Environment Requirements](#contents)
- Hardware( GPU/CPU/Ascend)
- Prepare hardware environment with Ascend, GPU or CPU processor.
- Framework
- [MindSpore ](https://gitee.com/mindspore/mindspore )
- For more information, please check the resources below:
- [MindSpore Tutorials ](https://www.mindspore.cn/tutorial/training/en/master/index.html )
- [MindSpore Python API ](https://www.mindspore.cn/doc/api_python/en/master/index.html )
# [Quick Start](#contents)
- running on Ascend
```bash
# run training example
bash run_train_ascend.sh 0 ./aclimdb ./glove_dir
# run evaluation example
bash run_eval_ascend.sh 0 ./preprocess lstm-20_390.ckpt
```
- running on GPU
```bash
# run training example
bash run_train_gpu.sh 0 ./aclimdb ./glove_dir
# run evaluation example
bash run_eval_gpu.sh 0 ./aclimdb ./glove_dir lstm-20_390.ckpt
```
- running on CPU
```bash
# run training example
bash run_train_cpu.sh ./aclimdb ./glove_dir
# run evaluation example
bash run_eval_cpu.sh ./aclimdb ./glove_dir lstm-20_390.ckpt
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```shell
.
├── lstm
├── README.md # descriptions about LSTM
├── script
│ ├── run_eval_gpu.sh # shell script for evaluation on GPU
│ ├── run_eval_ascend.sh # shell script for evaluation on Ascend
│ ├── run_eval_cpu.sh # shell script for evaluation on CPU
│ ├── run_train_gpu.sh # shell script for training on GPU
│ ├── run_train_ascend.sh # shell script for training on Ascend
│ └── run_train_cpu.sh # shell script for training on CPU
├── src
│ ├── config.py # parameter configuration
│ ├── dataset.py # dataset preprocess
│ ├── imdb.py # imdb dataset read script
│ ├── lr_schedule.py # dynamic_lr script
│ └── lstm.py # Sentiment model
├── eval.py # evaluation script on GPU, CPU and Ascend
└── train.py # training script on GPU, CPU and Ascend
```
## [Script Parameters](#contents)
### Training Script Parameters
```python
usage: train.py [-h] [--preprocess {true, false}] [--aclimdb_path ACLIMDB_PATH]
[--glove_path GLOVE_PATH] [--preprocess_path PREPROCESS_PATH]
[--ckpt_path CKPT_PATH] [--pre_trained PRE_TRAINING]
[--device_target {GPU, CPU, Ascend}]
Mindspore LSTM Example
options:
-h, --help # show this help message and exit
--preprocess {true, false} # whether to preprocess data.
--aclimdb_path ACLIMDB_PATH # path where the dataset is stored.
--glove_path GLOVE_PATH # path where the GloVe is stored.
--preprocess_path PREPROCESS_PATH # path where the pre-process data is stored.
--ckpt_path CKPT_PATH # the path to save the checkpoint file.
--pre_trained # the pretrained checkpoint file path.
--device_target # the target device to run, support "GPU", "CPU", "Ascend". Default: "Ascend".
```
### Running Options
```python
config.py:
GPU/CPU:
num_classes # classes num
dynamic_lr # if use dynamic learning rate
learning_rate # value of learning rate
momentum # value of momentum
num_epochs # epoch size
batch_size # batch size of input dataset
embed_size # the size of each embedding vector
num_hiddens # number of features of hidden layer
num_layers # number of layers of stacked LSTM
bidirectional # specifies whether it is a bidirectional LSTM
save_checkpoint_steps # steps for saving checkpoint files
Ascend:
num_classes # classes num
momentum # value of momentum
num_epochs # epoch size
batch_size # batch size of input dataset
embed_size # the size of each embedding vector
num_hiddens # number of features of hidden layer
num_layers # number of layers of stacked LSTM
bidirectional # specifies whether it is a bidirectional LSTM
save_checkpoint_steps # steps for saving checkpoint files
keep_checkpoint_max # max num of checkpoint files
dynamic_lr # if use dynamic learning rate
lr_init # init learning rate of Dynamic learning rate
lr_end # end learning rate of Dynamic learning rate
lr_max # max learning rate of Dynamic learning rate
lr_adjust_epoch # Dynamic learning rate adjust epoch
warmup_epochs # warmup epochs
global_step # global step
```
### Network Parameters
## [Dataset Preparation](#contents)
- Download the dataset aclImdb_v1.
Unzip the aclImdb_v1 dataset to any path you want and the folder structure should be as follows:
```bash
.
├── train # train dataset
└── test # infer dataset
```
- Download the GloVe file.
Unzip the glove.6B.zip to any path you want and the folder structure should be as follows:
```bash
.
├── glove.6B.100d.txt
├── glove.6B.200d.txt
├── glove.6B.300d.txt # we will use this one later.
└── glove.6B.50d.txt
```
Adding a new line at the beginning of the file which named `glove.6B.300d.txt` .
It means reading a total of 400,000 words, each represented by a 300-latitude word vector.
```bash
400000 300
```
## [Training Process](#contents)
- Set options in `config.py` , including learning rate and network hyperparameters.
- running on Ascend
Run `sh run_train_ascend.sh` for training.
``` bash
bash run_train_ascend.sh 0 ./aclimdb ./glove_dir
```
The above shell script will train in the background. You will get the loss value as following:
```shell
# grep "loss is " log.txt
epoch: 1 step: 390, loss is 0.6003723
epcoh: 2 step: 390, loss is 0.35312173
...
```
- running on GPU
Run `sh run_train_gpu.sh` for training.
``` bash
bash run_train_gpu.sh 0 ./aclimdb ./glove_dir
```
The above shell script will run distribute training in the background. You will get the loss value as following:
```shell
# grep "loss is " log.txt
epoch: 1 step: 390, loss is 0.6003723
epcoh: 2 step: 390, loss is 0.35312173
...
```
- running on CPU
Run `sh run_train_cpu.sh` for training.
``` bash
bash run_train_cpu.sh ./aclimdb ./glove_dir
```
The above shell script will train in the background. You will get the loss value as following:
```shell
# grep "loss is " log.txt
epoch: 1 step: 390, loss is 0.6003723
epcoh: 2 step: 390, loss is 0.35312173
...
```
## [Evaluation Process](#contents)
- evaluation on Ascend
Run `bash run_eval_ascend.sh` for evaluation.
``` bash
bash run_eval_ascend.sh 0 ./preprocess lstm-20_390.ckpt
```
- evaluation on GPU
Run `bash run_eval_gpu.sh` for evaluation.
``` bash
bash run_eval_gpu.sh 0 ./aclimdb ./glove_dir lstm-20_390.ckpt
```
- evaluation on CPU
Run `bash run_eval_cpu.sh` for evaluation.
``` bash
bash run_eval_cpu.sh ./aclimdb ./glove_dir lstm-20_390.ckpt
```
# [Model Description](#contents)
## [Performance](#contents)
### Training Performance
| Parameters | LSTM (Ascend) | LSTM (GPU) | LSTM (CPU) |
| -------------------------- | -------------------------- | -------------------------------------------------------------- | -------------------------- |
| Resource | Ascend 910 | Tesla V100-SMX2-16GB | Ubuntu X86-i7-8565U-16GB |
| uploaded Date | 12/21/2020 (month/day/year)| 10/28/2020 (month/day/year) | 10/28/2020 (month/day/year)|
| MindSpore Version | 1.1.0 | 1.0.0 | 1.0.0 |
| Dataset | aclimdb_v1 | aclimdb_v1 | aclimdb_v1 |
| Training Parameters | epoch=20, batch_size=64 | epoch=20, batch_size=64 | epoch=20, batch_size=64 |
| Optimizer | Momentum | Momentum | Momentum |
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy | Softmax Cross Entropy |
| Speed | 1049 | 1022 (1pcs) | 20 |
| Loss | 0.12 | 0.12 | 0.12 |
| Params (M) | 6.45 | 6.45 | 6.45 |
| Checkpoint for inference | 292.9M (.ckpt file) | 292.9M (.ckpt file) | 292.9M (.ckpt file) |
| Scripts | [lstm script ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm ) | [lstm script ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm ) | [lstm script ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm ) |
### Evaluation Performance
| Parameters | LSTM (Ascend) | LSTM (GPU) | LSTM (CPU) |
| ------------------- | ---------------------------- | --------------------------- | ---------------------------- |
| Resource | Ascend 910 | Tesla V100-SMX2-16GB | Ubuntu X86-i7-8565U-16GB |
| uploaded Date | 12/21/2020 (month/day/year) | 10/28/2020 (month/day/year) | 10/28/2020 (month/day/year) |
| MindSpore Version | 1.1.0 | 1.0.0 | 1.0.0 |
| Dataset | aclimdb_v1 | aclimdb_v1 | aclimdb_v1 |
| batch_size | 64 | 64 | 64 |
| Accuracy | 85% | 84% | 83% |
# [Description of Random Situation](#contents)
There are three random situations:
- Shuffle of the dataset.
- Initialization of some model weights.
# [ModelZoo Homepage](#contents)
Please check the official [homepage ](https://gitee.com/mindspore/mindspore/tree/master/model_zoo ).