You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/cv/maskrcnn/README.md

601 lines
31 KiB

# Contents
- [MaskRCNN Description](#maskrcnn-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Run in docker](#Run-in-docker)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Script Parameters](#training-script-parameters)
- [Parameters Configuration](#parameters-configuration)
- [Training Process](#training-process)
- [Training](#training)
- [Distributed Training](#distributed-training)
- [Training Result](#training-result)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Evaluation Result](#evaluation-result)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
4 years ago
- [Inference Performance](#inference-performance)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [MaskRCNN Description](#contents)
MaskRCNN is a conceptually simple, flexible, and general framework for object instance segmentation. The approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing to estimate human poses in the same framework.
It shows top results in all three tracks of the COCO suite of challenges, including instance segmentation, boundingbox object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners.
# [Model Architecture](#contents)
MaskRCNN is a two-stage target detection network. It extends FasterRCNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.This network uses a region proposal network (RPN), which can share the convolution features of the whole image with the detection network, so that the calculation of region proposal is almost cost free. The whole network further combines RPN and mask branch into a network by sharing the convolution features.
[Paper](http://cn.arxiv.org/pdf/1703.06870v3): Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick. "MaskRCNN"
# [Dataset](#contents)
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
- [COCO2017](https://cocodataset.org/) is a popular dataset with bounding-box and pixel-level stuff annotations. These annotations can be used for scene understanding tasks like semantic segmentation, object detection and image captioning. There are 118K/5K images for train/val.
- Dataset size: 19G
- Train: 18G, 118000 images
- Val: 1G, 5000 images
- Annotations: 241M, instances, captions, person_keypoints, etc.
- Data format: image and json files (Note: Data will be processed in dataset.py)
# [Environment Requirements](#contents)
- HardwareAscend
- Prepare hardware environment with Ascend processor.
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
4 years ago
- Docker base image
- [Ascend Hub](ascend.huawei.com/ascendhub/#/home)
- For more information, please check the resources below:
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
- third-party libraries
```bash
pip install Cython
pip install pycocotools
pip install mmcv=0.2.14
```
# [Quick Start](#contents)
1. Download the dataset COCO2017.
2. Change the COCO_ROOT and other settings you need in `config.py`. The directory structure should look like the follows:
```
.
└─cocodataset
├─annotations
├─instance_train2017.json
└─instance_val2017.json
├─val2017
└─train2017
```
If you use your own dataset to train the network, **Select dataset to other when run script.**
Create a txt file to store dataset information organized in the way as shown as following:
```
train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
```
Each row is an image annotation split by spaces. The first column is a relative path of image, followed by columns containing box and class information in the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `IMAGE_DIR`(dataset directory) and the relative path in `ANNO_PATH`(the TXT file path), which can be set in `config.py`.
3. Execute train script.
After dataset preparation, you can start training as follows:
```
# distributed training
bash run_distribute_train.sh [RANK_TABLE_FILE] [PRETRAINED_CKPT]
# standalone training
bash run_standalone_train.sh [PRETRAINED_CKPT]
```
Note:
1. To speed up data preprocessing, MindSpore provide a data format named MindRecord, hence the first step is to generate MindRecord files based on COCO2017 dataset before training. The process of converting raw COCO2017 dataset to MindRecord format may take about 4 hours.
2. For distributed training, a [hccl configuration file](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools) with JSON format needs to be created in advance.
3. PRETRAINED_CKPT is a resnet50 checkpoint that trained over ImageNet2012.you can train it with [resnet50](https://gitee.com/qujianwei/mindspore/tree/master/model_zoo/official/cv/resnet) scripts in modelzoo, and use src/convert_checkpoint.py to get the pretrain checkpoint file.
4. For large models like MaskRCNN, it's better to export an external environment variable `export HCCL_CONNECT_TIMEOUT=600` to extend hccl connection checking time from the default 120 seconds to 600 seconds. Otherwise, the connection could be timeout since compiling time increases with the growth of model size.
4. Execute eval script.
After training, you can start evaluation as follows:
```shell
# Evaluation
bash run_eval.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH]
```
Note:
1. VALIDATION_JSON_FILE is a label json file for evaluation.
5. Execute inference script.
After training, you can start inference as follows:
```shell
# inference
bash run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]
```
Note:
1. AIR_PATH is a model file, exported by export script file on the Ascend910 environment.
2. ANN_FILE_PATH is a annotation file for inference.
4 years ago
# Run in docker
1. Build docker images
```shell
# build docker
docker build -t maskrcnn:20.1.0 . --build-arg FROM_IMAGE_NAME=ascend-mindspore-arm:20.1.0
```
2. Create a container layer over the created image and start it
```shell
# start docker
bash scripts/docker_start.sh maskrcnn:20.1.0 [DATA_DIR] [MODEL_DIR]
```
3. Train
```shell
# standalone training
bash run_standalone_train.sh [PRETRAINED_CKPT]
# distributed training
bash run_distribute_train.sh [RANK_TABLE_FILE] [PRETRAINED_CKPT]
```
4. Eval
```shell
# Evaluation
bash run_eval.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH]
```
5. Inference.
```shell
# inference
bash run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]
```
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```shell
.
└─MaskRcnn
├─README.md # README
├─ascend310_infer #application for 310 inference
├─scripts # shell script
├─run_standalone_train.sh # training in standalone mode(1pcs)
├─run_distribute_train.sh # training in parallel mode(8 pcs)
├─run_infer_310.sh #shell script for 310 inference
└─run_eval.sh # evaluation
├─src
├─maskrcnn
├─__init__.py
├─anchor_generator.py # generate base bounding box anchors
├─bbox_assign_sample.py # filter positive and negative bbox for the first stage learning
├─bbox_assign_sample_stage2.py # filter positive and negative bbox for the second stage learning
├─mask_rcnn_r50.py # main network architecture of maskrcnn
├─fpn_neck.py # fpn network
├─proposal_generator.py # generate proposals based on feature map
├─rcnn_cls.py # rcnn bounding box regression branch
├─rcnn_mask.py # rcnn mask branch
├─resnet50.py # backbone network
├─roi_align.py # roi align network
└─rpn.py # reagion proposal network
├─aipp.cfg #aipp config file
├─config.py # network configuration
├─convert_checkpoint.py # convert resnet50 backbone checkpoint
├─dataset.py # dataset utils
├─lr_schedule.py # leanring rate geneatore
├─network_define.py # network define for maskrcnn
└─util.py # routine operation
├─mindspore_hub_conf.py # mindspore hub interface
├─export.py #script to export AIR,MINDIR,ONNX model
├─eval.py # evaluation scripts
├─postprogress.py #post process for 310 inference
└─train.py # training scripts
```
## [Script Parameters](#contents)
### [Training Script Parameters](#contents)
```shell
# distributed training
Usage: bash run_distribute_train.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL]
# standalone training
Usage: bash run_standalone_train.sh [PRETRAINED_MODEL]
```
### [Parameters Configuration](#contents)
```txt
"img_width": 1280, # width of the input images
"img_height": 768, # height of the input images
# random threshold in data augmentation
"keep_ratio": True,
"flip_ratio": 0.5,
"expand_ratio": 1.0,
"max_instance_count": 128, # max number of bbox for each image
"mask_shape": (28, 28), # shape of mask in rcnn_mask
# anchor
"feature_shapes": [(192, 320), (96, 160), (48, 80), (24, 40), (12, 20)], # shape of fpn feaure maps
"anchor_scales": [8], # area of base anchor
"anchor_ratios": [0.5, 1.0, 2.0], # ratio between width of height of base anchors
"anchor_strides": [4, 8, 16, 32, 64], # stride size of each feature map levels
"num_anchors": 3, # anchor number for each pixel
# resnet
"resnet_block": [3, 4, 6, 3], # block number in each layer
"resnet_in_channels": [64, 256, 512, 1024], # in channel size for each layer
"resnet_out_channels": [256, 512, 1024, 2048], # out channel size for each layer
# fpn
"fpn_in_channels": [256, 512, 1024, 2048], # in channel size for each layer
"fpn_out_channels": 256, # out channel size for every layer
"fpn_num_outs": 5, # out feature map size
# rpn
"rpn_in_channels": 256, # in channel size
"rpn_feat_channels": 256, # feature out channel size
"rpn_loss_cls_weight": 1.0, # weight of bbox classification in rpn loss
"rpn_loss_reg_weight": 1.0, # weight of bbox regression in rpn loss
"rpn_cls_out_channels": 1, # classification out channel size
"rpn_target_means": [0., 0., 0., 0.], # bounding box decode/encode means
"rpn_target_stds": [1.0, 1.0, 1.0, 1.0], # bounding box decode/encode stds
# bbox_assign_sampler
"neg_iou_thr": 0.3, # negative sample threshold after IOU
"pos_iou_thr": 0.7, # positive sample threshold after IOU
"min_pos_iou": 0.3, # minimal positive sample threshold after IOU
"num_bboxes": 245520, # total bbox number
"num_gts": 128, # total ground truth number
"num_expected_neg": 256, # negative sample number
"num_expected_pos": 128, # positive sample number
# proposal
"activate_num_classes": 2, # class number in rpn classification
"use_sigmoid_cls": True, # whethre use sigmoid as loss function in rpn classification
# roi_alignj
"roi_layer": dict(type='RoIAlign', out_size=7, mask_out_size=14, sample_num=2), # ROIAlign parameters
"roi_align_out_channels": 256, # ROIAlign out channels size
"roi_align_featmap_strides": [4, 8, 16, 32], # stride size for different level of ROIAling feature map
"roi_align_finest_scale": 56, # finest scale ofr ROIAlign
"roi_sample_num": 640, # sample number in ROIAling layer
# bbox_assign_sampler_stage2 # bbox assign sample for the second stage, parameter meaning is similar with bbox_assign_sampler
"neg_iou_thr_stage2": 0.5,
"pos_iou_thr_stage2": 0.5,
"min_pos_iou_stage2": 0.5,
"num_bboxes_stage2": 2000,
"num_expected_pos_stage2": 128,
"num_expected_neg_stage2": 512,
"num_expected_total_stage2": 512,
# rcnn # rcnn parameter for the second stage, parameter meaning is similar with fpn
"rcnn_num_layers": 2,
"rcnn_in_channels": 256,
"rcnn_fc_out_channels": 1024,
"rcnn_mask_out_channels": 256,
"rcnn_loss_cls_weight": 1,
"rcnn_loss_reg_weight": 1,
"rcnn_loss_mask_fb_weight": 1,
"rcnn_target_means": [0., 0., 0., 0.],
"rcnn_target_stds": [0.1, 0.1, 0.2, 0.2],
# train proposal
"rpn_proposal_nms_across_levels": False,
"rpn_proposal_nms_pre": 2000, # proposal number before nms in rpn
"rpn_proposal_nms_post": 2000, # proposal number after nms in rpn
"rpn_proposal_max_num": 2000, # max proposal number in rpn
"rpn_proposal_nms_thr": 0.7, # nms threshold for nms in rpn
"rpn_proposal_min_bbox_size": 0, # min size of box in rpn
# test proposal # part of parameters are similar with train proposal
"rpn_nms_across_levels": False,
"rpn_nms_pre": 1000,
"rpn_nms_post": 1000,
"rpn_max_num": 1000,
"rpn_nms_thr": 0.7,
"rpn_min_bbox_min_size": 0,
"test_score_thr": 0.05, # score threshold
"test_iou_thr": 0.5, # IOU threshold
"test_max_per_img": 100, # max number of instance
"test_batch_size": 2, # batch size
"rpn_head_use_sigmoid": True, # whether use sigmoid or not in rpn
"rpn_head_weight": 1.0, # rpn head weight in loss
"mask_thr_binary": 0.5, # mask threshold for in rcnn
# LR
"base_lr": 0.02, # base learning rate
"base_step": 58633, # bsae step in lr generator
"total_epoch": 13, # total epoch in lr generator
"warmup_step": 500, # warmp up step in lr generator
"warmup_ratio": 1/3.0, # warpm up ratio
"sgd_momentum": 0.9, # momentum in optimizer
# train
"batch_size": 2,
"loss_scale": 1,
"momentum": 0.91,
"weight_decay": 1e-4,
"pretrain_epoch_size": 0, # pretrained epoch size
"epoch_size": 12, # total epoch size
"save_checkpoint": True, # whether save checkpoint or not
"save_checkpoint_epochs": 1, # save checkpoint interval
"keep_checkpoint_max": 12, # max number of saved checkpoint
4 years ago
"save_checkpoint_path": "./", # path of checkpoint
"mindrecord_dir": "/home/maskrcnn/MindRecord_COCO2017_Train", # path of mindrecord
"coco_root": "/home/maskrcnn/", # path of coco root dateset
"train_data_type": "train2017", # name of train dataset
"val_data_type": "val2017", # name of evaluation dataset
"instance_set": "annotations/instances_{}.json", # name of annotation
"coco_classes": ('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush'),
"num_classes": 81
```
## [Training Process](#contents)
- Set options in `config.py`, including loss_scale, learning rate and network hyperparameters. Click [here](https://www.mindspore.cn/tutorial/training/zh-CN/master/use/data_preparation.html) for more information about dataset.
### [Training](#content)
- Run `run_standalone_train.sh` for non-distributed training of MaskRCNN model.
```bash
# standalone training
bash run_standalone_train.sh [PRETRAINED_MODEL]
```
### [Distributed Training](#content)
- Run `run_distribute_train.sh` for distributed training of Mask model.
```bash
bash run_distribute_train.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL]
```
4 years ago
- Notes
1. hccl.json which is specified by RANK_TABLE_FILE is needed when you are running a distribute task. You can generate it by using the [hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
2. As for PRETRAINED_MODELit should be a trained ResNet50 checkpoint. If not set, the model will be trained from the very beginning. If you need to load Ready-made pretrained MaskRcnn checkpoint, you may make changes to the train.py script as follows.
4 years ago
```python
# Comment out the following code
# load_path = args_opt.pre_trained
# if load_path != "":
# param_dict = load_checkpoint(load_path)
# for item in list(param_dict.keys()):
# if not item.startswith('backbone'):
# param_dict.pop(item)
# load_param_into_net(net, param_dict)
# Add the following codes after optimizer definition since the FasterRcnn checkpoint includes optimizer parameters
lr = Tensor(dynamic_lr(config, rank_size=device_num, start_steps=config.pretrain_epoch_size * dataset_size),
mstype.float32)
opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
weight_decay=config.weight_decay, loss_scale=config.loss_scale)
if load_path != "":
param_dict = load_checkpoint(load_path)
if config.pretrain_epoch_size == 0:
for item in list(param_dict.keys()):
if item in ("global_step", "learning_rate") or "rcnn.cls" in item or "rcnn.mask" in item:
param_dict.pop(item)
load_param_into_net(net, param_dict)
load_param_into_net(opt, param_dict)
```
3. This is processor cores binding operation regarding the `device_num` and total processor numbers. If you are not expect to do it, remove the operations `taskset` in `scripts/run_distribute_train.sh`
### [Training Result](#content)
Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the following in loss_rankid.log.
```bash
# distribute training result(8p)
4 years ago
epoch: 1 step: 7393 ,rpn_loss: 0.05716, rcnn_loss: 0.81152, rpn_cls_loss: 0.04828, rpn_reg_loss: 0.00889, rcnn_cls_loss: 0.28784, rcnn_reg_loss: 0.17590, rcnn_mask_loss: 0.34790, total_loss: 0.86868
epoch: 2 step: 7393 ,rpn_loss: 0.00434, rcnn_loss: 0.36572, rpn_cls_loss: 0.00339, rpn_reg_loss: 0.00095, rcnn_cls_loss: 0.08240, rcnn_reg_loss: 0.05554, rcnn_mask_loss: 0.22778, total_loss: 0.37006
epoch: 3 step: 7393 ,rpn_loss: 0.00996, rcnn_loss: 0.83789, rpn_cls_loss: 0.00701, rpn_reg_loss: 0.00294, rcnn_cls_loss: 0.39478, rcnn_reg_loss: 0.14917, rcnn_mask_loss: 0.29370, total_loss: 0.84785
...
4 years ago
epoch: 10 step: 7393 ,rpn_loss: 0.00667, rcnn_loss: 0.65625, rpn_cls_loss: 0.00536, rpn_reg_loss: 0.00131, rcnn_cls_loss: 0.17590, rcnn_reg_loss: 0.16199, rcnn_mask_loss: 0.31812, total_loss: 0.66292
epoch: 11 step: 7393 ,rpn_loss: 0.02003, rcnn_loss: 0.52051, rpn_cls_loss: 0.01761, rpn_reg_loss: 0.00241, rcnn_cls_loss: 0.16028, rcnn_reg_loss: 0.08411, rcnn_mask_loss: 0.27588, total_loss: 0.54054
epoch: 12 step: 7393 ,rpn_loss: 0.00547, rcnn_loss: 0.39258, rpn_cls_loss: 0.00285, rpn_reg_loss: 0.00262, rcnn_cls_loss: 0.08002, rcnn_reg_loss: 0.04990, rcnn_mask_loss: 0.26245, total_loss: 0.39804
```
## [Evaluation Process](#contents)
### [Evaluation](#content)
- Run `run_eval.sh` for evaluation.
```bash
# infer
bash run_eval.sh [VALIDATION_ANN_FILE_JSON] [CHECKPOINT_PATH]
```
5 years ago
> As for the COCO2017 dataset, VALIDATION_ANN_FILE_JSON is refer to the annotations/instances_val2017.json in the dataset directory.
> checkpoint can be produced and saved in training process, whose folder name begins with "train/checkpoint" or "train_parallel*/checkpoint".
>
> Images size in dataset should be equal to the annotation size in VALIDATION_ANN_FILE_JSON, otherwise the evaluation result cannot be displayed properly.
### [Evaluation result](#content)
Inference result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the following in log.
```bash
Evaluate annotation type *bbox*
Accumulating evaluation results...
4 years ago
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.378
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.602
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.407
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.242
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.417
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.311
4 years ago
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.497
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.524
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.567
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.647
Evaluate annotation type *segm*
Accumulating evaluation results...
4 years ago
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.335
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.557
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.351
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.169
4 years ago
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.365
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.284
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.433
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.451
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.285
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.490
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586
```
## Model Export
```shell
python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT]
```
`EXPORT_FORMAT` should be in ["AIR", "ONNX", "MINDIR"]
## Inference Process
### Usage
Before performing inference, the air file must bu exported by export script on the 910 environment.
4 years ago
Current batch_ Size can only be set to 1. The inference process needs about 600G hard disk space to save the reasoning results.
```shell
# Ascend310 inference
sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]
```
### result
Inference result is saved in current path, you can find result like this in acc.log file.
```bash
Evaluate annotation type *bbox*
Accumulating evaluation results...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.3368
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.589
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.394
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.218
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.411
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.476
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.305
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.489
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.514
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.323
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.562
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.657
Evaluate annotation type *segm*
Accumulating evaluation results...
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.323
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.544
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.336
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.147
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.353
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.479
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.278
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.439
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.248
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.478
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.594
```
# Model Description
## Performance
4 years ago
### Evaluation Performance
| Parameters | Ascend |
| -------------------------- | ----------------------------------------------------------- |
| Model Version | V1 |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory, 755G |
| uploaded Date | 08/01/2020 (month/day/year) |
| MindSpore Version | 1.0.0 |
| Dataset | COCO2017 |
| Training Parameters | epoch=12, batch_size = 2 |
| Optimizer | SGD |
4 years ago
| Loss Function | Softmax Cross Entropy, Sigmoid Cross Entropy, SmoothL1Loss |
| Output | Probability |
| Loss | 0.39804 |
| Speed | 1pc: 193 ms/step; 8pcs: 207 ms/step |
| Total time | 1pc: 46 hours; 8pcs: 5.38 hours |
| Parameters (M) | 84.8 |
| Checkpoint for Fine tuning | 85M(.ckpt file) |
| Model for inference | 571M(.air file) |
4 years ago
| Scripts | [maskrcnn script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/maskrcnn) |
4 years ago
### Inference Performance
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | V1 |
| Resource | Ascend 910 |
| Uploaded Date | 08/01/2020 (month/day/year) |
| MindSpore Version | 1.0.0 |
| Dataset | COCO2017 |
| batch_size | 2 |
| outputs | mAP |
4 years ago
| Accuracy | IoU=0.50:0.95 (BoundingBox 37.0%, Mask 33.5) |
| Model for inference | 170M (.ckpt file) |
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py for weight initialization.
# [ModelZoo Homepage](#contents)
4 years ago
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).