You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/parallel/test_bn_prelu_cell.py

261 lines
8.5 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
5 years ago
import mindspore as ms
import mindspore.common.dtype as DT
import mindspore.nn as nn
5 years ago
from mindspore import Tensor
from mindspore import context
from mindspore.common.initializer import initializer
5 years ago
from mindspore.common.parameter import Parameter
from mindspore.nn import WithLossCell
5 years ago
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.train.model import Model
from mindspore.train.parallel_utils import ParallelMode
5 years ago
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class FusedBatchNorm(nn.Cell):
"""Batch Normalization base class."""
5 years ago
def __init__(self,
num_features,
eps=1e-5,
momentum=0.1,
affine=True,
gamma_init='ones',
beta_init='zeros',
moving_mean_init='zeros',
moving_var_init='ones'):
super(FusedBatchNorm, self).__init__()
if num_features < 1:
raise ValueError("num_features must be at least 1")
if momentum < 0 or momentum > 1:
raise ValueError("momentum should be a number in range [0, 1], but got {}".format(momentum))
self.num_features = num_features
self.eps = eps
self.momentum = Tensor(1.0 - momentum, DT.float32)
self.gamma = Parameter(initializer(
gamma_init, num_features), name="gamma", requires_grad=affine)
self.beta = Parameter(initializer(
beta_init, num_features), name="beta", requires_grad=affine)
self.moving_mean = Parameter(initializer(
moving_mean_init, num_features), name="mean", requires_grad=False)
self.moving_variance = Parameter(initializer(
moving_var_init, num_features), name="variance", requires_grad=False)
self.bn_train = P.BatchNorm(is_training=True,
epsilon=self.eps)
self.bn_infer = P.BatchNorm(is_training=False,
epsilon=self.eps)
self.sub_mean = P.Sub().set_strategy(((1), (1)))
self.sub_var = P.Sub().set_strategy(((1), (1)))
5 years ago
self.mul_mean = P.Mul().set_strategy(((1,), ()))
self.mul_var = P.Mul().set_strategy(((1,), ()))
self.assign_sub_mean = P.AssignSub().set_strategy(((1,), (1,)))
self.assign_sub_var = P.AssignSub().set_strategy(((1), (1)))
self.sub_mean2 = P.Sub().set_strategy(((1), (1)))
self.sub_var2 = P.Sub().set_strategy(((1), (1)))
def set_strategy(self, strategy):
self.bn_train.set_strategy(strategy)
self.bn_infer.set_strategy(strategy)
def _check_data_dim(self, x):
raise NotImplementedError
def construct(self, x):
if self.training:
y, batch_mean, batch_var, _, _ = \
self.bn_train(x,
self.gamma,
self.beta,
None,
None)
mean_sub = self.sub_mean(self.moving_mean, batch_mean)
temp_mean = self.mul_mean(mean_sub, self.momentum)
mean_sub2 = self.sub_var(self.moving_variance, batch_var)
temp_variance = self.mul_var(mean_sub2, self.momentum)
y = F.depend(y, self.assign_sub_mean(self.moving_mean, temp_mean))
y = F.depend(y, self.assign_sub_var(self.moving_variance, temp_variance))
else:
y = self.bn_infer(x,
self.gamma,
self.beta,
self.moving_mean,
self.moving_variance)[0]
return y
def extend_repr(self):
return 'num_features={}, eps={}, momentum={}, ' \
'beta={}, gamma={}, ' \
'moving_mean={}, moving_variance={} ' \
.format(self.num_features,
self.eps,
self.momentum,
self.beta,
self.gamma,
self.moving_mean,
self.moving_variance)
class PReLU(nn.Cell):
"""
PReLU activation function.
Computes prelu value of a 4-dim tensor(NCHW).
PReLU: out = max(0, A) + min(0, wA)
Args:
channel: Integer. The dimensionality of w. Default: 1.
w: Float. The initial value of w. Default: 0.25.
Returns:
Tensor, has the same type as features.
Examples:
prelu = nn.PReLU(1, [np.float32(0.25)]) # or prelu = nn.PReLU(33, Tensor(np.random.rand(33), ms.float32)])
input_data = Tensor(np.random.rand(1, 33, 4, 4), ms.float32)
output = prelu.construct(input_data)
"""
5 years ago
def __init__(self, channel=1, w=0.25):
super(PReLU, self).__init__()
if isinstance(w, (np.float32, float)):
tmp = np.empty((channel,), dtype=np.float32)
tmp.fill(w)
w = tmp
elif isinstance(w, (int, bool, complex, str)):
raise TypeError("w only support input type float32 and float")
if not isinstance(w, Tensor):
w = Tensor(w)
self.w = Parameter(initializer(w, [channel,]), name='a')
self.prelu = P.PReLU()
self.relu = P.ReLU().set_strategy(((1)))
def construct(self, x):
self.w = self.relu(self.w)
return self.prelu(x, self.w)
class BNNet(nn.Cell):
def __init__(self):
super(BNNet, self).__init__()
self.bn = FusedBatchNorm(512)
self.prelu = PReLU(512)
def construct(self, x):
x = self.bn(x)
x = self.prelu(x)
return x
def bn_net():
return BNNet()
def bn_common(parallel_mode, train_flag, strategy_loss=None):
context.set_context(mode=context.GRAPH_MODE)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
rank_size = 8
predict = Tensor(np.ones([32, 512]), dtype=ms.float32)
label = Tensor(np.ones([32]), dtype=ms.int32)
dataset = Dataset(predict, label, 2)
net = bn_net()
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
loss.softmax_cross_entropy.set_strategy(strategy_loss)
opt = Momentum(net.trainable_params(), learning_rate, momentum, 0.0001, 1024 * rank_size)
if not train_flag:
net = WithLossCell(net, loss)
net.set_train()
if parallel_mode == ParallelMode.DATA_PARALLEL:
context.set_auto_parallel_context(parameter_broadcast=True)
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
model = Model(net, loss, opt)
if train_flag:
model.train(epoch_size, dataset, dataset_sink_mode=False)
else:
model._predict(predict, label)
def test_data_parallel():
parallel_mode = ParallelMode.DATA_PARALLEL
train_flag = True
bn_common(parallel_mode, train_flag)
def auto_parallel():
train_flag = True
parallel_mode = ParallelMode.AUTO_PARALLEL
bn_common(parallel_mode, train_flag)
def Xtest_data_parallel_predict():
parallel_mode = ParallelMode.DATA_PARALLEL
train_flag = False
bn_common(parallel_mode, train_flag)
def Xtest_semi_auto_parallel_predict():
train_flag = False
parallel_mode = ParallelMode.SEMI_AUTO_PARALLEL
bn_common(parallel_mode, train_flag)
def Xtest_auto_parallel_predict():
train_flag = False
parallel_mode = ParallelMode.AUTO_PARALLEL
bn_common(parallel_mode, train_flag)
if __name__ == '__main__':
auto_parallel()