|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""Train Resnet50_quant on Cifar10"""
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
|
|
from easydict import EasyDict as ed
|
|
|
|
|
|
|
|
from mindspore import context
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
|
|
from mindspore.train.model import Model
|
|
|
|
from mindspore.train.quant import quant
|
|
|
|
from mindspore import set_seed
|
|
|
|
|
|
|
|
from resnet_quant_manual import resnet50_quant
|
|
|
|
from dataset import create_dataset
|
|
|
|
from lr_generator import get_lr
|
|
|
|
from utils import Monitor, CrossEntropy
|
|
|
|
|
|
|
|
|
|
|
|
config_quant = ed({
|
|
|
|
"class_num": 10,
|
|
|
|
"batch_size": 128,
|
|
|
|
"step_threshold": 20,
|
|
|
|
"loss_scale": 1024,
|
|
|
|
"momentum": 0.9,
|
|
|
|
"weight_decay": 1e-4,
|
|
|
|
"epoch_size": 1,
|
|
|
|
"pretrained_epoch_size": 90,
|
|
|
|
"buffer_size": 1000,
|
|
|
|
"image_height": 224,
|
|
|
|
"image_width": 224,
|
|
|
|
"data_load_mode": "mindata",
|
|
|
|
"save_checkpoint": True,
|
|
|
|
"save_checkpoint_epochs": 1,
|
|
|
|
"keep_checkpoint_max": 50,
|
|
|
|
"save_checkpoint_path": "./",
|
|
|
|
"warmup_epochs": 0,
|
|
|
|
"lr_decay_mode": "cosine",
|
|
|
|
"use_label_smooth": True,
|
|
|
|
"label_smooth_factor": 0.1,
|
|
|
|
"lr_init": 0,
|
|
|
|
"lr_max": 0.005,
|
|
|
|
})
|
|
|
|
|
|
|
|
dataset_path = "/home/workspace/mindspore_dataset/cifar-10-batches-bin/"
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level1
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_resnet50_quant():
|
|
|
|
set_seed(1)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
config = config_quant
|
|
|
|
print("training configure: {}".format(config))
|
|
|
|
epoch_size = config.epoch_size
|
|
|
|
|
|
|
|
# define network
|
|
|
|
net = resnet50_quant(class_num=config.class_num)
|
|
|
|
net.set_train(True)
|
|
|
|
|
|
|
|
# define loss
|
|
|
|
if not config.use_label_smooth:
|
|
|
|
config.label_smooth_factor = 0.0
|
|
|
|
loss = CrossEntropy(
|
|
|
|
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
|
|
|
#loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
|
|
|
|
|
|
|
# define dataset
|
|
|
|
dataset = create_dataset(dataset_path=dataset_path,
|
|
|
|
config=config,
|
|
|
|
repeat_num=1,
|
|
|
|
batch_size=config.batch_size)
|
|
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
|
|
|
|
# convert fusion network to quantization aware network
|
|
|
|
net = quant.convert_quant_network(net,
|
|
|
|
bn_fold=True,
|
|
|
|
per_channel=[True, False],
|
|
|
|
symmetric=[True, False])
|
|
|
|
|
|
|
|
# get learning rate
|
|
|
|
lr = Tensor(get_lr(lr_init=config.lr_init,
|
|
|
|
lr_end=0.0,
|
|
|
|
lr_max=config.lr_max,
|
|
|
|
warmup_epochs=config.warmup_epochs,
|
|
|
|
total_epochs=config.epoch_size,
|
|
|
|
steps_per_epoch=step_size,
|
|
|
|
lr_decay_mode='cosine'))
|
|
|
|
|
|
|
|
# define optimization
|
|
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
|
|
|
config.weight_decay, config.loss_scale)
|
|
|
|
|
|
|
|
# define model
|
|
|
|
#model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt)
|
|
|
|
|
|
|
|
print("============== Starting Training ==============")
|
|
|
|
monitor = Monitor(lr_init=lr.asnumpy(),
|
|
|
|
step_threshold=config.step_threshold)
|
|
|
|
|
|
|
|
callbacks = [monitor]
|
|
|
|
model.train(epoch_size, dataset, callbacks=callbacks,
|
|
|
|
dataset_sink_mode=False)
|
|
|
|
print("============== End Training ==============")
|
|
|
|
|
|
|
|
expect_avg_step_loss = 2.40
|
|
|
|
avg_step_loss = np.mean(np.array(monitor.losses))
|
|
|
|
|
|
|
|
print("average step loss:{}".format(avg_step_loss))
|
|
|
|
assert avg_step_loss < expect_avg_step_loss
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_resnet50_quant()
|