You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/quantization/resnet50_quant/test_resnet50_quant.py

132 lines
4.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Train Resnet50_quant on Cifar10"""
import pytest
import numpy as np
from easydict import EasyDict as ed
from mindspore import context
from mindspore import Tensor
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore.train.quant import quant
from mindspore import set_seed
from resnet_quant_manual import resnet50_quant
from dataset import create_dataset
from lr_generator import get_lr
from utils import Monitor, CrossEntropy
config_quant = ed({
"class_num": 10,
"batch_size": 128,
"step_threshold": 20,
"loss_scale": 1024,
"momentum": 0.9,
"weight_decay": 1e-4,
"epoch_size": 1,
"pretrained_epoch_size": 90,
"buffer_size": 1000,
"image_height": 224,
"image_width": 224,
"data_load_mode": "mindata",
"save_checkpoint": True,
"save_checkpoint_epochs": 1,
"keep_checkpoint_max": 50,
"save_checkpoint_path": "./",
"warmup_epochs": 0,
"lr_decay_mode": "cosine",
"use_label_smooth": True,
"label_smooth_factor": 0.1,
"lr_init": 0,
"lr_max": 0.005,
})
dataset_path = "/home/workspace/mindspore_dataset/cifar-10-batches-bin/"
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_resnet50_quant():
set_seed(1)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
config = config_quant
print("training configure: {}".format(config))
epoch_size = config.epoch_size
# define network
net = resnet50_quant(class_num=config.class_num)
net.set_train(True)
# define loss
if not config.use_label_smooth:
config.label_smooth_factor = 0.0
loss = CrossEntropy(
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
#loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
# define dataset
dataset = create_dataset(dataset_path=dataset_path,
config=config,
repeat_num=1,
batch_size=config.batch_size)
step_size = dataset.get_dataset_size()
# convert fusion network to quantization aware network
net = quant.convert_quant_network(net,
bn_fold=True,
per_channel=[True, False],
symmetric=[True, False])
# get learning rate
lr = Tensor(get_lr(lr_init=config.lr_init,
lr_end=0.0,
lr_max=config.lr_max,
warmup_epochs=config.warmup_epochs,
total_epochs=config.epoch_size,
steps_per_epoch=step_size,
lr_decay_mode='cosine'))
# define optimization
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
config.weight_decay, config.loss_scale)
# define model
#model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
model = Model(net, loss_fn=loss, optimizer=opt)
print("============== Starting Training ==============")
monitor = Monitor(lr_init=lr.asnumpy(),
step_threshold=config.step_threshold)
callbacks = [monitor]
model.train(epoch_size, dataset, callbacks=callbacks,
dataset_sink_mode=False)
print("============== End Training ==============")
expect_avg_step_loss = 2.40
avg_step_loss = np.mean(np.array(monitor.losses))
print("average step loss:{}".format(avg_step_loss))
assert avg_step_loss < expect_avg_step_loss
if __name__ == '__main__':
test_resnet50_quant()