|
|
@ -25,6 +25,7 @@ from mindspore.common import dtype as mstype
|
|
|
|
from mindspore.ops import functional as F
|
|
|
|
from mindspore.ops import functional as F
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.ops.operations import _grad_ops as G
|
|
|
|
from mindspore.ops.operations import _grad_ops as G
|
|
|
|
|
|
|
|
from mindspore.ops.operations import _inner_ops as inner
|
|
|
|
from ..ut_filter import non_graph_engine
|
|
|
|
from ..ut_filter import non_graph_engine
|
|
|
|
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|
|
|
from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|
|
|
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|
|
|
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|
|
@ -1051,7 +1052,7 @@ test_case_nn_ops = [
|
|
|
|
'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
|
|
|
|
'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
|
|
|
|
'desc_bprop': [[2, 1, 2]]}),
|
|
|
|
'desc_bprop': [[2, 1, 2]]}),
|
|
|
|
('Range', {
|
|
|
|
('Range', {
|
|
|
|
'block': P.Range(1.0, 5.0),
|
|
|
|
'block': inner.Range(1.0, 5.0),
|
|
|
|
'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
|
|
|
|
'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
|
|
|
|
'desc_bprop': [[10]]}),
|
|
|
|
'desc_bprop': [[10]]}),
|
|
|
|
('UnsortedSegmentSum', {
|
|
|
|
('UnsortedSegmentSum', {
|
|
|
@ -1454,7 +1455,7 @@ test_case_array_ops = [
|
|
|
|
'desc_inputs': [(Tensor(np.array([1], np.float32)),
|
|
|
|
'desc_inputs': [(Tensor(np.array([1], np.float32)),
|
|
|
|
Tensor(np.array([1], np.float32)),
|
|
|
|
Tensor(np.array([1], np.float32)),
|
|
|
|
Tensor(np.array([1], np.float32)))],
|
|
|
|
Tensor(np.array([1], np.float32)))],
|
|
|
|
'desc_bprop': [[3,]]}),
|
|
|
|
'desc_bprop': [[3, ]]}),
|
|
|
|
('Pack_0', {
|
|
|
|
('Pack_0', {
|
|
|
|
'block': NetForPackInput(P.Pack()),
|
|
|
|
'block': NetForPackInput(P.Pack()),
|
|
|
|
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
|
|
|
|
'desc_inputs': [[2, 2], [2, 2], [2, 2]],
|
|
|
@ -1527,7 +1528,7 @@ test_case_array_ops = [
|
|
|
|
Tensor(np.array([0, 1, 1]).astype(np.int32))],
|
|
|
|
Tensor(np.array([0, 1, 1]).astype(np.int32))],
|
|
|
|
'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}),
|
|
|
|
'desc_bprop': [Tensor(np.array([[1, 2, 3], [4, 2, 1]]).astype(np.float32))]}),
|
|
|
|
('BroadcastTo', {
|
|
|
|
('BroadcastTo', {
|
|
|
|
'block': P.BroadcastTo((2,3)),
|
|
|
|
'block': P.BroadcastTo((2, 3)),
|
|
|
|
'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
|
|
|
|
'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))],
|
|
|
|
'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}),
|
|
|
|
'desc_bprop': [Tensor(np.array([[1, 2, 3], [1, 2, 3]]).astype(np.float32))]}),
|
|
|
|
('InTopK', {
|
|
|
|
('InTopK', {
|
|
|
|