!8917 Add grad definition for sigmoidGrad.

From: @david-he91
Reviewed-by: @liangchenghui,@linqingke
Signed-off-by: @liangchenghui
pull/8917/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 0793198891

@ -472,6 +472,19 @@ def get_bprop_sigmoid(self):
return bprop
@bprop_getters.register(G.SigmoidGrad)
def get_bprop_sigmoid_grad(self):
"""Grad definition for `SigmoidGrad` operation."""
sigmoid_grad = G.SigmoidGrad()
def bprop(y, grad, out, dout):
ddy = dout * grad * (1. - 2 * y)
d2x = sigmoid_grad(y, dout)
return (ddy, d2x)
return bprop
@bprop_getters.register(P.Softmax)
def get_bprop_softmax(self):
"""Grad definition for `Softmax` operation."""

@ -0,0 +1,86 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops.operations import _grad_ops as G
from mindspore.ops.composite import GradOperation
class NetSigmoidGrad(nn.Cell):
def __init__(self):
super(NetSigmoidGrad, self).__init__()
self.sigmoid_grad = G.SigmoidGrad()
@ms_function
def construct(self, y, dy):
return self.sigmoid_grad(y, dy)
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(get_all=True, sens_param=True)
self.network = network
@ms_function
def construct(self, y, y_grad, dout):
return self.grad(self.network)(y, y_grad, dout)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sigmoid_grad_grad():
y = Tensor(np.array([[[[-1, 1, 2],
[1, -1, 1],
[2, 1, -1]]]]).astype(np.float32))
y_grad = Tensor(np.array([[[[-11, 2, 4],
[-1, 1, -1],
[-4, 4, -4]]]]).astype(np.float32))
dout = Tensor(np.array([[[[-11, 2, 4],
[-1, 1, -1],
[-4, 4, -4]]]]).astype(np.float32))
expect_ddy = np.array([[[[363., -4., -48.],
[-1., 3., -1.],
[-48., -16., 48.]]]]).astype(np.float32)
expect_d2x = np.array([[[[22., 0., -8.],
[-0., -2., -0.],
[8., 0., 8.]]]]).astype(np.float32)
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
sigmoid_grad_grad = Grad(NetSigmoidGrad())
ddy, d2x = sigmoid_grad_grad(y, y_grad, dout)
diff0 = ddy.asnumpy() - expect_ddy
diff1 = d2x.asnumpy() - expect_d2x
assert np.all(abs(diff0) < error)
assert np.all(abs(diff1) < error)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sigmoid_grad_grad = Grad(NetSigmoidGrad())
ddy, d2x = sigmoid_grad_grad(y, y_grad, dout)
diff0 = ddy.asnumpy() - expect_ddy
diff1 = d2x.asnumpy() - expect_d2x
assert np.all(abs(diff0) < error)
assert np.all(abs(diff1) < error)
Loading…
Cancel
Save