!8917 Add grad definition for sigmoidGrad.
From: @david-he91 Reviewed-by: @liangchenghui,@linqingke Signed-off-by: @liangchenghuipull/8917/MERGE
commit
0793198891
@ -0,0 +1,86 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
||||
class NetSigmoidGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSigmoidGrad, self).__init__()
|
||||
self.sigmoid_grad = G.SigmoidGrad()
|
||||
|
||||
@ms_function
|
||||
def construct(self, y, dy):
|
||||
return self.sigmoid_grad(y, dy)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, y, y_grad, dout):
|
||||
return self.grad(self.network)(y, y_grad, dout)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sigmoid_grad_grad():
|
||||
y = Tensor(np.array([[[[-1, 1, 2],
|
||||
[1, -1, 1],
|
||||
[2, 1, -1]]]]).astype(np.float32))
|
||||
y_grad = Tensor(np.array([[[[-11, 2, 4],
|
||||
[-1, 1, -1],
|
||||
[-4, 4, -4]]]]).astype(np.float32))
|
||||
dout = Tensor(np.array([[[[-11, 2, 4],
|
||||
[-1, 1, -1],
|
||||
[-4, 4, -4]]]]).astype(np.float32))
|
||||
|
||||
expect_ddy = np.array([[[[363., -4., -48.],
|
||||
[-1., 3., -1.],
|
||||
[-48., -16., 48.]]]]).astype(np.float32)
|
||||
|
||||
expect_d2x = np.array([[[[22., 0., -8.],
|
||||
[-0., -2., -0.],
|
||||
[8., 0., 8.]]]]).astype(np.float32)
|
||||
|
||||
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
sigmoid_grad_grad = Grad(NetSigmoidGrad())
|
||||
ddy, d2x = sigmoid_grad_grad(y, y_grad, dout)
|
||||
diff0 = ddy.asnumpy() - expect_ddy
|
||||
diff1 = d2x.asnumpy() - expect_d2x
|
||||
assert np.all(abs(diff0) < error)
|
||||
assert np.all(abs(diff1) < error)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
sigmoid_grad_grad = Grad(NetSigmoidGrad())
|
||||
ddy, d2x = sigmoid_grad_grad(y, y_grad, dout)
|
||||
diff0 = ddy.asnumpy() - expect_ddy
|
||||
diff1 = d2x.asnumpy() - expect_d2x
|
||||
assert np.all(abs(diff0) < error)
|
||||
assert np.all(abs(diff1) < error)
|
Loading…
Reference in new issue