|
|
@ -19,35 +19,48 @@ import pytest
|
|
|
|
import mindspore.context as context
|
|
|
|
import mindspore.context as context
|
|
|
|
import mindspore.nn as nn
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore import Tensor
|
|
|
|
from mindspore import Tensor
|
|
|
|
|
|
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NetCenteredRMSProp(nn.Cell):
|
|
|
|
class NetCenteredRMSProp(nn.Cell):
|
|
|
|
def __init__(self, lr, decay, momentum, epsilon):
|
|
|
|
def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom):
|
|
|
|
super(NetCenteredRMSProp, self).__init__()
|
|
|
|
super(NetCenteredRMSProp, self).__init__()
|
|
|
|
self.rms_opt = P.ApplyCenteredRMSProp()
|
|
|
|
self.rms_opt = P.ApplyCenteredRMSProp()
|
|
|
|
self.lr = lr
|
|
|
|
self.lr = lr
|
|
|
|
self.decay = decay
|
|
|
|
self.decay = decay
|
|
|
|
self.momentum = momentum
|
|
|
|
self.momentum = momentum
|
|
|
|
self.epsilon = epsilon
|
|
|
|
self.epsilon = epsilon
|
|
|
|
|
|
|
|
self.var = var
|
|
|
|
|
|
|
|
self.g = g
|
|
|
|
|
|
|
|
self.mg = mg
|
|
|
|
|
|
|
|
self.rms = rms
|
|
|
|
|
|
|
|
self.mom = mom
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, var, g, mg, rms, mom):
|
|
|
|
def construct(self):
|
|
|
|
return self.rms_opt(var, mg, rms, mom, g, self.lr, self.decay, self.momentum, self.epsilon)
|
|
|
|
return self.rms_opt(self.var, self.mg, self.rms, self.mom, self.g, self.lr, self.decay, self.momentum,
|
|
|
|
|
|
|
|
self.epsilon)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NetRMSProp(nn.Cell):
|
|
|
|
class NetRMSProp(nn.Cell):
|
|
|
|
def __init__(self, lr, decay, momentum, epsilon):
|
|
|
|
def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom):
|
|
|
|
super(NetRMSProp, self).__init__()
|
|
|
|
super(NetRMSProp, self).__init__()
|
|
|
|
self.lr = lr
|
|
|
|
self.lr = lr
|
|
|
|
self.decay = decay
|
|
|
|
self.decay = decay
|
|
|
|
self.momentum = momentum
|
|
|
|
self.momentum = momentum
|
|
|
|
self.epsilon = epsilon
|
|
|
|
self.epsilon = epsilon
|
|
|
|
|
|
|
|
self.var = var
|
|
|
|
|
|
|
|
self.g = g
|
|
|
|
|
|
|
|
self.mg = mg
|
|
|
|
|
|
|
|
self.rms = rms
|
|
|
|
|
|
|
|
self.mom = mom
|
|
|
|
self.rms_opt = P.ApplyRMSProp()
|
|
|
|
self.rms_opt = P.ApplyRMSProp()
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, var, g, mg, rms, mom):
|
|
|
|
def construct(self):
|
|
|
|
return self.rms_opt(var, rms, mom, self.lr, g, self.decay, self.momentum, self.epsilon)
|
|
|
|
return self.rms_opt(self.var, self.rms, self.mom, self.lr, self.g, self.decay, self.momentum, self.epsilon)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rmsprop_numpy(variable, gradients, mean_square, moment,
|
|
|
|
def rmsprop_numpy(variable, gradients, mean_square, moment,
|
|
|
@ -67,6 +80,7 @@ def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment
|
|
|
|
variable = variable - moment
|
|
|
|
variable = variable - moment
|
|
|
|
return variable, gradients, mean_gradients, mean_square, moment
|
|
|
|
return variable, gradients, mean_gradients, mean_square, moment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
@pytest.mark.env_onecard
|
|
|
@ -79,25 +93,33 @@ def test_rmsprop():
|
|
|
|
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
|
|
|
|
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
|
|
|
|
moment_np = np.array([0.0, 0.0], dtype=np.float32)
|
|
|
|
moment_np = np.array([0.0, 0.0], dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
variable_ms = Tensor(variable_np)
|
|
|
|
variable = Tensor(variable_np)
|
|
|
|
gradients_ms = Tensor(gradients_np)
|
|
|
|
gradients = Tensor(gradients_np)
|
|
|
|
mean_gradients_ms = Tensor(mean_gradients_np)
|
|
|
|
mean_gradients = Tensor(mean_gradients_np)
|
|
|
|
mean_square_ms = Tensor(mean_square_np)
|
|
|
|
mean_square = Tensor(mean_square_np)
|
|
|
|
moment_ms = Tensor(moment_np)
|
|
|
|
moment = Tensor(moment_np)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
variable_ms = Parameter(initializer(variable, variable.shape), name='var')
|
|
|
|
|
|
|
|
gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad')
|
|
|
|
|
|
|
|
mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg')
|
|
|
|
|
|
|
|
mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr')
|
|
|
|
|
|
|
|
moment_ms = Parameter(initializer(moment, moment.shape), name='mom')
|
|
|
|
|
|
|
|
|
|
|
|
if centered:
|
|
|
|
if centered:
|
|
|
|
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
|
|
|
|
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
|
|
|
|
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
|
|
|
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
|
|
|
|
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
|
|
|
mean_square_ms, moment_ms)
|
|
|
|
|
|
|
|
_ = net()
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
variable_np, gradients_np, mean_square_np, moment_np = \
|
|
|
|
variable_np, gradients_np, mean_square_np, moment_np = \
|
|
|
|
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
|
|
|
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
|
|
|
|
net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
|
|
|
mean_square_ms, moment_ms)
|
|
|
|
|
|
|
|
_ = net()
|
|
|
|
|
|
|
|
|
|
|
|
error = np.ones(shape=variable_np.shape) * 10e-6
|
|
|
|
error = np.ones(shape=variable_np.shape) * 10e-6
|
|
|
|
diff = variable_ms.asnumpy() - variable_np
|
|
|
|
diff = variable_ms.asnumpy() - variable_np
|
|
|
@ -132,24 +154,32 @@ def test_rmspropcenter():
|
|
|
|
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
|
|
|
|
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
|
|
|
|
moment_np = np.array([0.0, 0.0], dtype=np.float32)
|
|
|
|
moment_np = np.array([0.0, 0.0], dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
variable_ms = Tensor(variable_np)
|
|
|
|
variable = Tensor(variable_np)
|
|
|
|
gradients_ms = Tensor(gradients_np)
|
|
|
|
gradients = Tensor(gradients_np)
|
|
|
|
mean_gradients_ms = Tensor(mean_gradients_np)
|
|
|
|
mean_gradients = Tensor(mean_gradients_np)
|
|
|
|
mean_square_ms = Tensor(mean_square_np)
|
|
|
|
mean_square = Tensor(mean_square_np)
|
|
|
|
moment_ms = Tensor(moment_np)
|
|
|
|
moment = Tensor(moment_np)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
variable_ms = Parameter(initializer(variable, variable.shape), name='var')
|
|
|
|
|
|
|
|
gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad')
|
|
|
|
|
|
|
|
mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg')
|
|
|
|
|
|
|
|
mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr')
|
|
|
|
|
|
|
|
moment_ms = Parameter(initializer(moment, moment.shape), name='mom')
|
|
|
|
|
|
|
|
|
|
|
|
if centered:
|
|
|
|
if centered:
|
|
|
|
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
|
|
|
|
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
|
|
|
|
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
|
|
|
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
|
|
|
|
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
|
|
|
mean_square_ms, moment_ms)
|
|
|
|
|
|
|
|
_ = net()
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
variable_np, gradients_np, mean_square_np, moment_np = \
|
|
|
|
variable_np, gradients_np, mean_square_np, moment_np = \
|
|
|
|
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
|
|
|
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
|
|
|
|
net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
|
|
|
mean_square_ms, moment_ms)
|
|
|
|
|
|
|
|
_ = net()
|
|
|
|
|
|
|
|
|
|
|
|
error = np.ones(shape=variable_np.shape) * 10e-6
|
|
|
|
error = np.ones(shape=variable_np.shape) * 10e-6
|
|
|
|
diff = variable_ms.asnumpy() - variable_np
|
|
|
|
diff = variable_ms.asnumpy() - variable_np
|
|
|
|