parent
e8172b3e8f
commit
09b2dcb3fb
@ -0,0 +1,101 @@
|
|||||||
|
# MobileNetV2 Example
|
||||||
|
|
||||||
|
## Description
|
||||||
|
|
||||||
|
This is an example of training MobileNetV2 with ImageNet2012 dataset in MindSpore.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
* Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||||
|
|
||||||
|
* Download the dataset [ImageNet2012](http://www.image-net.org/).
|
||||||
|
|
||||||
|
> Unzip the ImageNet2012 dataset to any path you want and the folder structure should be as follows:
|
||||||
|
> ```
|
||||||
|
> .
|
||||||
|
> ├── train # train dataset
|
||||||
|
> └── val # infer dataset
|
||||||
|
> ```
|
||||||
|
|
||||||
|
## Example structure
|
||||||
|
|
||||||
|
``` shell
|
||||||
|
.
|
||||||
|
├── config.py # parameter configuration
|
||||||
|
├── dataset.py # data preprocessing
|
||||||
|
├── eval.py # infer script
|
||||||
|
├── launch.py # launcher for distributed training
|
||||||
|
├── lr_generator.py # generate learning rate for each step
|
||||||
|
├── run_infer.sh # launch infering
|
||||||
|
├── run_train.sh # launch training
|
||||||
|
└── train.py # train script
|
||||||
|
```
|
||||||
|
|
||||||
|
## Parameter configuration
|
||||||
|
|
||||||
|
Parameters for both training and inference can be set in 'config.py'.
|
||||||
|
|
||||||
|
```
|
||||||
|
"num_classes": 1000, # dataset class num
|
||||||
|
"image_height": 224, # image height
|
||||||
|
"image_width": 224, # image width
|
||||||
|
"batch_size": 256, # training or infering batch size
|
||||||
|
"epoch_size": 200, # total training epochs, including warmup_epochs
|
||||||
|
"warmup_epochs": 4, # warmup epochs
|
||||||
|
"lr": 0.4, # base learning rate
|
||||||
|
"momentum": 0.9, # momentum
|
||||||
|
"weight_decay": 4e-5, # weight decay
|
||||||
|
"loss_scale": 1024, # loss scale
|
||||||
|
"save_checkpoint": True, # whether save checkpoint
|
||||||
|
"save_checkpoint_epochs": 1, # the epoch interval between two checkpoints
|
||||||
|
"keep_checkpoint_max": 200, # only keep the last keep_checkpoint_max checkpoint
|
||||||
|
"save_checkpoint_path": "./checkpoint" # path to save checkpoint
|
||||||
|
```
|
||||||
|
|
||||||
|
## Running the example
|
||||||
|
|
||||||
|
### Train
|
||||||
|
|
||||||
|
#### Usage
|
||||||
|
Usage: sh run_train.sh [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
|
||||||
|
|
||||||
|
#### Launch
|
||||||
|
|
||||||
|
```
|
||||||
|
# training example
|
||||||
|
sh run_train.sh 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Result
|
||||||
|
|
||||||
|
Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings.
|
||||||
|
|
||||||
|
```
|
||||||
|
epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100]
|
||||||
|
epoch time: 140522.500, per step time: 224.836, avg loss: 5.258
|
||||||
|
epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200]
|
||||||
|
epoch time: 138331.250, per step time: 221.330, avg loss: 3.917
|
||||||
|
```
|
||||||
|
|
||||||
|
### Infer
|
||||||
|
|
||||||
|
#### Usage
|
||||||
|
|
||||||
|
Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH]
|
||||||
|
|
||||||
|
#### Launch
|
||||||
|
|
||||||
|
```
|
||||||
|
# infer example
|
||||||
|
sh run_infer.sh ~/imagenet ~/train/mobilenet-200_625.ckpt
|
||||||
|
```
|
||||||
|
|
||||||
|
> checkpoint can be produced in training process.
|
||||||
|
|
||||||
|
#### Result
|
||||||
|
|
||||||
|
Inference result will be stored in the example path, you can find result like the followings in `val.log`.
|
||||||
|
|
||||||
|
```
|
||||||
|
result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt
|
||||||
|
```
|
@ -0,0 +1,35 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
network config setting, will be used in train.py and eval.py
|
||||||
|
"""
|
||||||
|
from easydict import EasyDict as ed
|
||||||
|
|
||||||
|
config = ed({
|
||||||
|
"num_classes": 1000,
|
||||||
|
"image_height": 224,
|
||||||
|
"image_width": 224,
|
||||||
|
"batch_size": 256,
|
||||||
|
"epoch_size": 200,
|
||||||
|
"warmup_epochs": 4,
|
||||||
|
"lr": 0.4,
|
||||||
|
"momentum": 0.9,
|
||||||
|
"weight_decay": 4e-5,
|
||||||
|
"loss_scale": 1024,
|
||||||
|
"save_checkpoint": True,
|
||||||
|
"save_checkpoint_epochs": 1,
|
||||||
|
"keep_checkpoint_max": 200,
|
||||||
|
"save_checkpoint_path": "./checkpoint",
|
||||||
|
})
|
@ -0,0 +1,84 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
create train or eval dataset.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
import mindspore.dataset.engine as de
|
||||||
|
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||||
|
import mindspore.dataset.transforms.c_transforms as C2
|
||||||
|
from config import config
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
|
||||||
|
"""
|
||||||
|
create a train or eval dataset
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dataset_path(string): the path of dataset.
|
||||||
|
do_train(bool): whether dataset is used for train or eval.
|
||||||
|
repeat_num(int): the repeat times of dataset. Default: 1
|
||||||
|
batch_size(int): the batch size of dataset. Default: 32
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dataset
|
||||||
|
"""
|
||||||
|
rank_size = int(os.getenv("RANK_SIZE"))
|
||||||
|
rank_id = int(os.getenv("RANK_ID"))
|
||||||
|
|
||||||
|
if rank_size == 1:
|
||||||
|
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=16, shuffle=True)
|
||||||
|
else:
|
||||||
|
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=16, shuffle=True,
|
||||||
|
num_shards=rank_size, shard_id=rank_id)
|
||||||
|
|
||||||
|
resize_height = config.image_height
|
||||||
|
resize_width = config.image_width
|
||||||
|
rescale = 1.0 / 255.0
|
||||||
|
shift = 0.0
|
||||||
|
buffer_size = 1000
|
||||||
|
|
||||||
|
# define map operations
|
||||||
|
decode_op = C.Decode()
|
||||||
|
resize_crop_op = C.RandomResizedCrop(resize_height, scale=(0.2, 1.0))
|
||||||
|
horizontal_flip_op = C.RandomHorizontalFlip()
|
||||||
|
|
||||||
|
resize_op = C.Resize((256, 256))
|
||||||
|
center_crop = C.CenterCrop(resize_width)
|
||||||
|
rescale_op = C.Rescale(rescale, shift)
|
||||||
|
normalize_op = C.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
|
change_swap_op = C.HWC2CHW()
|
||||||
|
|
||||||
|
if do_train:
|
||||||
|
trans = [decode_op, resize_crop_op, horizontal_flip_op, rescale_op, normalize_op, change_swap_op]
|
||||||
|
else:
|
||||||
|
trans = [decode_op, resize_op, center_crop, rescale_op, normalize_op, change_swap_op]
|
||||||
|
|
||||||
|
type_cast_op = C2.TypeCast(mstype.int32)
|
||||||
|
|
||||||
|
ds = ds.map(input_columns="image", operations=trans)
|
||||||
|
ds = ds.map(input_columns="label", operations=type_cast_op)
|
||||||
|
|
||||||
|
# apply shuffle operations
|
||||||
|
ds = ds.shuffle(buffer_size=buffer_size)
|
||||||
|
|
||||||
|
# apply batch operations
|
||||||
|
ds = ds.batch(batch_size, drop_remainder=True)
|
||||||
|
|
||||||
|
# apply dataset repeat operation
|
||||||
|
ds = ds.repeat(repeat_num)
|
||||||
|
|
||||||
|
return ds
|
@ -0,0 +1,56 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
eval.
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
from dataset import create_dataset
|
||||||
|
from config import config
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore.model_zoo.mobilenet import mobilenet_v2
|
||||||
|
from mindspore.train.model import Model
|
||||||
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||||
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Image classification')
|
||||||
|
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||||
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
|
||||||
|
device_id = int(os.getenv('DEVICE_ID'))
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False)
|
||||||
|
context.set_context(enable_task_sink=True)
|
||||||
|
context.set_context(enable_loop_sink=True)
|
||||||
|
context.set_context(enable_mem_reuse=True)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
context.set_context(enable_hccl=False)
|
||||||
|
|
||||||
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
||||||
|
net = mobilenet_v2()
|
||||||
|
|
||||||
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size)
|
||||||
|
step_size = dataset.get_dataset_size()
|
||||||
|
|
||||||
|
if args_opt.checkpoint_path:
|
||||||
|
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||||
|
load_param_into_net(net, param_dict)
|
||||||
|
net.set_train(False)
|
||||||
|
|
||||||
|
model = Model(net, loss_fn=loss, metrics={'acc'})
|
||||||
|
res = model.eval(dataset)
|
||||||
|
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
@ -0,0 +1,150 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""launch train script"""
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import subprocess
|
||||||
|
import json
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
"""
|
||||||
|
parse args .
|
||||||
|
|
||||||
|
Args:
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
args.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> parse_args()
|
||||||
|
"""
|
||||||
|
parser = ArgumentParser(description="mindspore distributed training launch "
|
||||||
|
"helper utilty that will spawn up "
|
||||||
|
"multiple distributed processes")
|
||||||
|
parser.add_argument("--nproc_per_node", type=int, default=1,
|
||||||
|
help="The number of processes to launch on each node, "
|
||||||
|
"for D training, this is recommended to be set "
|
||||||
|
"to the number of D in your system so that "
|
||||||
|
"each process can be bound to a single D.")
|
||||||
|
parser.add_argument("--visible_devices", type=str, default="0,1,2,3,4,5,6,7",
|
||||||
|
help="will use the visible devices sequentially")
|
||||||
|
parser.add_argument("--server_id", type=str, default="",
|
||||||
|
help="server ip")
|
||||||
|
parser.add_argument("--training_script", type=str,
|
||||||
|
help="The full path to the single D training "
|
||||||
|
"program/script to be launched in parallel, "
|
||||||
|
"followed by all the arguments for the "
|
||||||
|
"training script")
|
||||||
|
# rest from the training program
|
||||||
|
args, unknown = parser.parse_known_args()
|
||||||
|
args.training_script_args = unknown
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
print("start", __file__)
|
||||||
|
args = parse_args()
|
||||||
|
print(args)
|
||||||
|
visible_devices = args.visible_devices.split(',')
|
||||||
|
assert os.path.isfile(args.training_script)
|
||||||
|
assert len(visible_devices) >= args.nproc_per_node
|
||||||
|
print('visible_devices:{}'.format(visible_devices))
|
||||||
|
if not args.server_id:
|
||||||
|
print('pleaser input server ip!!!')
|
||||||
|
exit(0)
|
||||||
|
print('server_id:{}'.format(args.server_id))
|
||||||
|
|
||||||
|
# construct hccn_table
|
||||||
|
hccn_configs = open('/etc/hccn.conf', 'r').readlines()
|
||||||
|
device_ips = {}
|
||||||
|
for hccn_item in hccn_configs:
|
||||||
|
hccn_item = hccn_item.strip()
|
||||||
|
if hccn_item.startswith('address_'):
|
||||||
|
device_id, device_ip = hccn_item.split('=')
|
||||||
|
device_id = device_id.split('_')[1]
|
||||||
|
device_ips[device_id] = device_ip
|
||||||
|
print('device_id:{}, device_ip:{}'.format(device_id, device_ip))
|
||||||
|
hccn_table = {}
|
||||||
|
hccn_table['board_id'] = '0x0000'
|
||||||
|
hccn_table['chip_info'] = '910'
|
||||||
|
hccn_table['deploy_mode'] = 'lab'
|
||||||
|
hccn_table['group_count'] = '1'
|
||||||
|
hccn_table['group_list'] = []
|
||||||
|
instance_list = []
|
||||||
|
usable_dev = ''
|
||||||
|
for instance_id in range(args.nproc_per_node):
|
||||||
|
instance = {}
|
||||||
|
instance['devices'] = []
|
||||||
|
device_id = visible_devices[instance_id]
|
||||||
|
device_ip = device_ips[device_id]
|
||||||
|
usable_dev += str(device_id)
|
||||||
|
instance['devices'].append({
|
||||||
|
'device_id': device_id,
|
||||||
|
'device_ip': device_ip,
|
||||||
|
})
|
||||||
|
instance['rank_id'] = str(instance_id)
|
||||||
|
instance['server_id'] = args.server_id
|
||||||
|
instance_list.append(instance)
|
||||||
|
hccn_table['group_list'].append({
|
||||||
|
'device_num': str(args.nproc_per_node),
|
||||||
|
'server_num': '1',
|
||||||
|
'group_name': '',
|
||||||
|
'instance_count': str(args.nproc_per_node),
|
||||||
|
'instance_list': instance_list,
|
||||||
|
})
|
||||||
|
hccn_table['para_plane_nic_location'] = 'device'
|
||||||
|
hccn_table['para_plane_nic_name'] = []
|
||||||
|
for instance_id in range(args.nproc_per_node):
|
||||||
|
eth_id = visible_devices[instance_id]
|
||||||
|
hccn_table['para_plane_nic_name'].append('eth{}'.format(eth_id))
|
||||||
|
hccn_table['para_plane_nic_num'] = str(args.nproc_per_node)
|
||||||
|
hccn_table['status'] = 'completed'
|
||||||
|
|
||||||
|
# save hccn_table to file
|
||||||
|
table_path = os.getcwd()
|
||||||
|
if not os.path.exists(table_path):
|
||||||
|
os.mkdir(table_path)
|
||||||
|
table_fn = os.path.join(table_path,
|
||||||
|
'rank_table_{}p_{}_{}.json'.format(args.nproc_per_node, usable_dev, args.server_id))
|
||||||
|
with open(table_fn, 'w') as table_fp:
|
||||||
|
json.dump(hccn_table, table_fp, indent=4)
|
||||||
|
sys.stdout.flush()
|
||||||
|
|
||||||
|
# spawn the processes
|
||||||
|
current_env = os.environ.copy()
|
||||||
|
current_env["RANK_SIZE"] = str(args.nproc_per_node)
|
||||||
|
if args.nproc_per_node > 1:
|
||||||
|
current_env["MINDSPORE_HCCL_CONFIG_PATH"] = table_fn
|
||||||
|
processes = []
|
||||||
|
cmds = []
|
||||||
|
for rank_id in range(0, args.nproc_per_node):
|
||||||
|
current_env["RANK_ID"] = str(rank_id)
|
||||||
|
current_env["DEVICE_ID"] = visible_devices[rank_id]
|
||||||
|
cmd = [sys.executable, "-u"]
|
||||||
|
cmd.append(args.training_script)
|
||||||
|
cmd.extend(args.training_script_args)
|
||||||
|
process = subprocess.Popen(cmd, env=current_env)
|
||||||
|
processes.append(process)
|
||||||
|
cmds.append(cmd)
|
||||||
|
for process, cmd in zip(processes, cmds):
|
||||||
|
process.wait()
|
||||||
|
if process.returncode != 0:
|
||||||
|
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,54 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""learning rate generator"""
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):
|
||||||
|
"""
|
||||||
|
generate learning rate array
|
||||||
|
|
||||||
|
Args:
|
||||||
|
global_step(int): total steps of the training
|
||||||
|
lr_init(float): init learning rate
|
||||||
|
lr_end(float): end learning rate
|
||||||
|
lr_max(float): max learning rate
|
||||||
|
warmup_epochs(int): number of warmup epochs
|
||||||
|
total_epochs(int): total epoch of training
|
||||||
|
steps_per_epoch(int): steps of one epoch
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
np.array, learning rate array
|
||||||
|
"""
|
||||||
|
lr_each_step = []
|
||||||
|
total_steps = steps_per_epoch * total_epochs
|
||||||
|
warmup_steps = steps_per_epoch * warmup_epochs
|
||||||
|
for i in range(total_steps):
|
||||||
|
if i < warmup_steps:
|
||||||
|
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
|
||||||
|
else:
|
||||||
|
lr = lr_end + \
|
||||||
|
(lr_max - lr_end) * \
|
||||||
|
(1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2.
|
||||||
|
if lr < 0.0:
|
||||||
|
lr = 0.0
|
||||||
|
lr_each_step.append(lr)
|
||||||
|
|
||||||
|
current_step = global_step
|
||||||
|
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||||
|
learning_rate = lr_each_step[current_step:]
|
||||||
|
|
||||||
|
return learning_rate
|
@ -0,0 +1,33 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
if [ $# != 2 ]
|
||||||
|
then
|
||||||
|
echo "Usage: sh run_infer.sh [DATASET_PATH] [CHECKPOINT_PATH]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d $1 ]
|
||||||
|
then
|
||||||
|
echo "error: DATASET_PATH=$1 is not a directory"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $2 ]
|
||||||
|
then
|
||||||
|
echo "error: CHECKPOINT_PATH=$2 is not a file"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
|
||||||
|
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
|
||||||
|
export DEVICE_ID=0
|
||||||
|
export RANK_ID=0
|
||||||
|
export RANK_SIZE=1
|
||||||
|
if [ -d "eval" ];
|
||||||
|
then
|
||||||
|
rm -rf ./eval
|
||||||
|
fi
|
||||||
|
mkdir ./eval
|
||||||
|
cd ./eval || exit
|
||||||
|
python ${BASEPATH}/eval.py \
|
||||||
|
--checkpoint_path=$2 \
|
||||||
|
--dataset_path=$1 &> infer.log & # dataset val folder path
|
@ -0,0 +1,33 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
if [ $# != 4 ]
|
||||||
|
then
|
||||||
|
echo "Usage: sh run_train.sh [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $1 -lt 1 ] && [ $1 -gt 8 ]
|
||||||
|
then
|
||||||
|
echo "error: DEVICE_NUM=$1 is not in (1-8)"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -d $4 ]
|
||||||
|
then
|
||||||
|
echo "error: DATASET_PATH=$4 is not a directory"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
|
||||||
|
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
|
||||||
|
if [ -d "train" ];
|
||||||
|
then
|
||||||
|
rm -rf ./train
|
||||||
|
fi
|
||||||
|
mkdir ./train
|
||||||
|
cd ./train || exit
|
||||||
|
python ${BASEPATH}/launch.py \
|
||||||
|
--nproc_per_node=$1 \
|
||||||
|
--visible_devices=$3 \
|
||||||
|
--server_id=$2 \
|
||||||
|
--training_script=${BASEPATH}/train.py \
|
||||||
|
--dataset_path=$4 &> train.log & # dataset train folder
|
@ -0,0 +1,149 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""train_imagenet."""
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
from dataset import create_dataset
|
||||||
|
from lr_generator import get_lr
|
||||||
|
from config import config
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.model_zoo.mobilenet import mobilenet_v2
|
||||||
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||||
|
from mindspore.nn.optim.momentum import Momentum
|
||||||
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||||
|
|
||||||
|
from mindspore.train.model import Model, ParallelMode
|
||||||
|
|
||||||
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
||||||
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||||
|
import mindspore.dataset.engine as de
|
||||||
|
from mindspore.communication.management import init
|
||||||
|
|
||||||
|
random.seed(1)
|
||||||
|
np.random.seed(1)
|
||||||
|
de.config.set_seed(1)
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Image classification')
|
||||||
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
|
||||||
|
device_id = int(os.getenv('DEVICE_ID'))
|
||||||
|
rank_id = int(os.getenv('RANK_ID'))
|
||||||
|
rank_size = int(os.getenv('RANK_SIZE'))
|
||||||
|
run_distribute = rank_size > 1
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False)
|
||||||
|
context.set_context(enable_task_sink=True)
|
||||||
|
context.set_context(enable_loop_sink=True)
|
||||||
|
context.set_context(enable_mem_reuse=True)
|
||||||
|
|
||||||
|
|
||||||
|
class Monitor(Callback):
|
||||||
|
"""
|
||||||
|
Monitor loss and time.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lr_init (numpy array): train lr
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, lr_init=None):
|
||||||
|
super(Monitor, self).__init__()
|
||||||
|
self.lr_init = lr_init
|
||||||
|
self.lr_init_len = len(lr_init)
|
||||||
|
|
||||||
|
def epoch_begin(self, run_context):
|
||||||
|
self.losses = []
|
||||||
|
self.epoch_time = time.time()
|
||||||
|
|
||||||
|
def epoch_end(self, run_context):
|
||||||
|
cb_params = run_context.original_args()
|
||||||
|
|
||||||
|
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||||
|
per_step_mseconds = epoch_mseconds / cb_params.batch_num
|
||||||
|
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
|
||||||
|
per_step_mseconds,
|
||||||
|
np.mean(self.losses)
|
||||||
|
), flush=True)
|
||||||
|
|
||||||
|
def step_begin(self, run_context):
|
||||||
|
self.step_time = time.time()
|
||||||
|
|
||||||
|
def step_end(self, run_context):
|
||||||
|
cb_params = run_context.original_args()
|
||||||
|
step_mseconds = (time.time() - self.step_time) * 1000
|
||||||
|
step_loss = cb_params.net_outputs
|
||||||
|
|
||||||
|
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
|
||||||
|
step_loss = step_loss[0]
|
||||||
|
if isinstance(step_loss, Tensor):
|
||||||
|
step_loss = np.mean(step_loss.asnumpy())
|
||||||
|
|
||||||
|
self.losses.append(step_loss)
|
||||||
|
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
|
||||||
|
|
||||||
|
print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
|
||||||
|
cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
|
||||||
|
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]), flush=True)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
if run_distribute:
|
||||||
|
context.set_context(enable_hccl=True)
|
||||||
|
context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||||
|
parameter_broadcast=True, mirror_mean=True)
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([140])
|
||||||
|
init()
|
||||||
|
else:
|
||||||
|
context.set_context(enable_hccl=False)
|
||||||
|
|
||||||
|
epoch_size = config.epoch_size
|
||||||
|
net = mobilenet_v2(num_classes=config.num_classes)
|
||||||
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
|
||||||
|
|
||||||
|
print("train args: ", args_opt, "\ncfg: ", config,
|
||||||
|
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
|
||||||
|
|
||||||
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
|
||||||
|
repeat_num=epoch_size, batch_size=config.batch_size)
|
||||||
|
step_size = dataset.get_dataset_size()
|
||||||
|
|
||||||
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||||
|
lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config.lr,
|
||||||
|
warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size))
|
||||||
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||||
|
config.weight_decay, config.loss_scale)
|
||||||
|
|
||||||
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, amp_level='O0',
|
||||||
|
keep_batchnorm_fp32=False)
|
||||||
|
|
||||||
|
cb = None
|
||||||
|
if rank_id == 0:
|
||||||
|
cb = [Monitor(lr_init=lr.asnumpy())]
|
||||||
|
if config.save_checkpoint:
|
||||||
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||||
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||||
|
ckpt_cb = ModelCheckpoint(prefix="mobilenet", directory=config.save_checkpoint_path, config=config_ck)
|
||||||
|
cb += [ckpt_cb]
|
||||||
|
model.train(epoch_size, dataset, callbacks=cb)
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue