updating ut for RandomHorizontalFlipWithBBox and BBoxAugment

pull/2587/head
islam_amin 5 years ago
parent a12f9614d4
commit 0f58f0338e

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,229 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the random horizontal flip with bounding boxes op in DE
"""
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = "../data/dataset/testVOC2012_2"
def fix_annotate(bboxes):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for bbox in bboxes:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
return bboxes
def test_random_horizontal_flip_with_bbox_op_c(plot_vis=False):
"""
Prints images side by side with and without Aug applied + bboxes to
compare and test
"""
logger.info("test_random_horizontal_flip_with_bbox_op_c")
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_bbox_with_bbox_valid_rand_c(plot_vis=False):
"""
Uses a valid non-default input, expect to pass
Prints images side by side with and without Aug applied + bboxes to
compare and test
"""
logger.info("test_random_horizontal_bbox_valid_rand_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(0.6)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
filename = "random_horizontal_flip_with_bbox_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False):
"""
Test RandomHorizontalFlipWithBBox op (testing with valid edge case, box covering full image).
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_horizontal_flip_with_bbox_valid_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
# maps to fix annotations to minddata standard
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
# Add column for "annotation"
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=lambda img, bbox:
(img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.uint32)))
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
def test_random_horizontal_flip_with_bbox_invalid_prob_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid input probability
"""
logger.info("test_random_horizontal_bbox_invalid_prob_c")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# Note: Valid range of prob should be [0.0, 1.0]
test_op = c_vision.RandomHorizontalFlipWithBBox(1.5)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input is not" in str(error)
def test_random_horizontal_flip_with_bbox_invalid_bounds_c():
"""
Test RandomHorizontalFlipWithBBox op with invalid bounding boxes
"""
logger.info("test_random_horizontal_bbox_invalid_bounds_c")
test_op = c_vision.RandomHorizontalFlipWithBBox(1)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_random_horizontal_flip_with_bbox_op_c(plot_vis=False)
test_random_horizontal_bbox_with_bbox_valid_rand_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_valid_edge_c(plot_vis=False)
test_random_horizontal_flip_with_bbox_invalid_prob_c()
test_random_horizontal_flip_with_bbox_invalid_bounds_c()
Loading…
Cancel
Save