add testcase for Gelu/GeluGradpull/8244/head
parent
19c793feb0
commit
0f8f1cdda7
@ -0,0 +1,83 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
import mindspore.ops.operations as P
|
||||
import mindspore.ops.operations._grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
|
||||
|
||||
|
||||
class GeluNet(Cell):
|
||||
def __init__(self):
|
||||
super(GeluNet, self).__init__()
|
||||
self.gelu = P.Gelu()
|
||||
|
||||
def construct(self, x):
|
||||
return self.gelu(x)
|
||||
|
||||
|
||||
class GeluGradNet(Cell):
|
||||
def __init__(self):
|
||||
super(GeluGradNet, self).__init__()
|
||||
self.gelu_grad = G.GeluGrad()
|
||||
|
||||
def construct(self, dy, x, y):
|
||||
return self.gelu_grad(dy, x, y)
|
||||
|
||||
|
||||
def CalGelu(x):
|
||||
tmp = np.sqrt(2.0 / np.pi) * (x + 0.044715 * x * x * x)
|
||||
expect = 0.5 * x * (1.0 + np.tanh(tmp))
|
||||
return expect
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_gelu():
|
||||
input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
||||
|
||||
net = GeluNet()
|
||||
result = net(Tensor(input_x))
|
||||
|
||||
expect = CalGelu(input_x)
|
||||
|
||||
res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
||||
assert res
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_gelu_grad():
|
||||
input_dy = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
||||
input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
||||
input_y = CalGelu(input_x)
|
||||
|
||||
net = GeluGradNet()
|
||||
result = net(Tensor(input_dy), Tensor(input_x), Tensor(input_y))
|
||||
|
||||
tanh_res = np.tanh(0.7978845608 * (input_x + 0.044715 * input_x * input_x * input_x))
|
||||
mul_right = 0.7978845608 + 0.1070322244 * input_x * input_x
|
||||
dx = 0.5 * (1.0 + tanh_res) + 0.5 * input_x * (1.0 - tanh_res * tanh_res) * mul_right
|
||||
expect = input_dy * dx
|
||||
|
||||
res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
||||
assert res
|
Loading…
Reference in new issue