use two_conv_fold for ascend quant net

pull/9623/head
yuchaojie 4 years ago
parent cc4f6a30e4
commit 1503d1e230

@ -101,7 +101,8 @@ def train_on_ascend():
# convert fusion network to quantization aware network # convert fusion network to quantization aware network
quantizer = QuantizationAwareTraining(bn_fold=True, quantizer = QuantizationAwareTraining(bn_fold=True,
per_channel=[True, False], per_channel=[True, False],
symmetric=[True, False]) symmetric=[True, False],
one_conv_fold=False)
network = quantizer.quantize(network) network = quantizer.quantize(network)
# get learning rate # get learning rate

@ -115,7 +115,8 @@ if __name__ == '__main__':
# convert fusion network to quantization aware network # convert fusion network to quantization aware network
quantizer = QuantizationAwareTraining(bn_fold=True, quantizer = QuantizationAwareTraining(bn_fold=True,
per_channel=[True, False], per_channel=[True, False],
symmetric=[True, False]) symmetric=[True, False],
one_conv_fold=False)
net = quantizer.quantize(net) net = quantizer.quantize(net)
# get learning rate # get learning rate

@ -170,7 +170,8 @@ def train():
if config.quantization_aware: if config.quantization_aware:
quantizer = QuantizationAwareTraining(bn_fold=True, quantizer = QuantizationAwareTraining(bn_fold=True,
per_channel=[True, False], per_channel=[True, False],
symmetric=[True, False]) symmetric=[True, False],
one_conv_fold=False)
network = quantizer.quantize(network) network = quantizer.quantize(network)
network = YoloWithLossCell(network) network = YoloWithLossCell(network)

Loading…
Cancel
Save