parent
afe048474d
commit
16f0688230
@ -0,0 +1,138 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/cuda_impl/broadcast_impl.cuh"
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T, typename S>
|
||||
struct GreaterFunc {
|
||||
__device__ __forceinline__ S operator()(const T &lhs, const T &rhs) { return lhs > rhs ? true : false; }
|
||||
};
|
||||
|
||||
template <typename T, typename S>
|
||||
struct LessFunc {
|
||||
__device__ __forceinline__ S operator()(const T &lhs, const T &rhs) { return lhs < rhs ? true : false; }
|
||||
};
|
||||
|
||||
template <typename T, typename S>
|
||||
struct MinimumFunc {
|
||||
__device__ __forceinline__ S operator()(const T &lhs, const T &rhs) { return lhs < rhs ? lhs : rhs; }
|
||||
};
|
||||
|
||||
template <typename T, typename S>
|
||||
struct MaximumFunc {
|
||||
__device__ __forceinline__ S operator()(const T &lhs, const T &rhs) { return lhs > rhs ? lhs : rhs; }
|
||||
};
|
||||
|
||||
template <typename T, typename S>
|
||||
struct PowerFunc {
|
||||
__device__ __forceinline__ S operator()(const T &lhs, const T &rhs) { return pow(lhs, rhs); }
|
||||
};
|
||||
|
||||
__device__ __forceinline__ int Index(const int &index, const int &dim) { return dim == 1 ? 0 : index; }
|
||||
|
||||
template <typename T, typename S, typename Func>
|
||||
__device__ __forceinline__ void BroadcastOperator(const int &l0, const int &l1, const int &l2, const int &l3,
|
||||
const int &r0, const int &r1, const int &r2, const int &r3,
|
||||
const int &d0, const int &d1, const int &d2, const int &d3,
|
||||
const T *input0, const T *input1, S *output) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < d0 * d1 * d2 * d3; pos += blockDim.x * gridDim.x) {
|
||||
int i = pos / (d1 * d2 * d3) % d0;
|
||||
int j = pos / (d2 * d3) % d1;
|
||||
int k = pos / d3 % d2;
|
||||
int l = pos % d3;
|
||||
|
||||
int l_index = Index(i, l0) * l1 * l2 * l3 + Index(j, l1) * l2 * l3 + Index(k, l2) * l3 + Index(l, l3);
|
||||
int r_index = Index(i, r0) * r1 * r2 * r3 + Index(j, r1) * r2 * r3 + Index(k, r2) * r3 + Index(l, r3);
|
||||
output[pos] = Func()(input0[l_index], input1[r_index]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
__global__ void BroadcastKernel(const int l0, const int l1, const int l2, const int l3, const int r0, const int r1,
|
||||
const int r2, const int r3, const int d0, const int d1, const int d2, const int d3,
|
||||
enum BroadcastOpType op, const T *input0, const T *input1, S *output) {
|
||||
switch (op) {
|
||||
case BROADCAST_TYPE_GREATER:
|
||||
return BroadcastOperator<T, S, GreaterFunc<T, S>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, input0, input1,
|
||||
output);
|
||||
case BROADCAST_TYPE_LESS:
|
||||
return BroadcastOperator<T, S, LessFunc<T, S>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, input0, input1,
|
||||
output);
|
||||
case BROADCAST_TYPE_MINIMUM:
|
||||
return BroadcastOperator<T, S, MinimumFunc<T, S>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, input0, input1,
|
||||
output);
|
||||
case BROADCAST_TYPE_MAXIMUM:
|
||||
return BroadcastOperator<T, S, MaximumFunc<T, S>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, input0, input1,
|
||||
output);
|
||||
case BROADCAST_TYPE_POWER:
|
||||
return BroadcastOperator<T, S, PowerFunc<T, S>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, input0, input1,
|
||||
output);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
void Broadcast(const int &l0, const int &l1, const int &l2, const int &l3, const int &r0, const int &r1, const int &r2,
|
||||
const int &r3, const int &d0, const int &d1, const int &d2, const int &d3, enum BroadcastOpType op,
|
||||
const T *input0, const T *input1, S *output, cudaStream_t stream) {
|
||||
int size = d0 * d1 * d2 * d3;
|
||||
BroadcastKernel<<<GET_BLOCKS(size), GET_THREADS, 0, stream>>>(l0, l1, l2, l3, r0, r1, r2, r3, d0, d1, d2, d3, op,
|
||||
input0, input1, output);
|
||||
}
|
||||
|
||||
template <typename T, typename S, typename Func>
|
||||
__device__ __forceinline__ void NoBroadcastOperator(const int &nums, const T *input0, const T *input1, S *output) {
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < nums; pos += blockDim.x * gridDim.x) {
|
||||
output[pos] = Func()(input0[pos], input1[pos]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
__global__ void NoBroadcastKernel(const int nums, enum BroadcastOpType op, const T *input0, const T *input1,
|
||||
S *output) {
|
||||
switch (op) {
|
||||
case BROADCAST_TYPE_GREATER:
|
||||
return NoBroadcastOperator<T, S, GreaterFunc<T, bool>>(nums, input0, input1, output);
|
||||
case BROADCAST_TYPE_LESS:
|
||||
return NoBroadcastOperator<T, S, LessFunc<T, bool>>(nums, input0, input1, output);
|
||||
case BROADCAST_TYPE_MINIMUM:
|
||||
return NoBroadcastOperator<T, S, MinimumFunc<T, S>>(nums, input0, input1, output);
|
||||
case BROADCAST_TYPE_MAXIMUM:
|
||||
return NoBroadcastOperator<T, S, MaximumFunc<T, S>>(nums, input0, input1, output);
|
||||
case BROADCAST_TYPE_POWER:
|
||||
return NoBroadcastOperator<T, S, PowerFunc<T, S>>(nums, input0, input1, output);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename S>
|
||||
void NoBroadcast(const int &nums, enum BroadcastOpType op, const T *input0, const T *input1, S *output,
|
||||
cudaStream_t stream) {
|
||||
NoBroadcastKernel<<<GET_BLOCKS(nums), GET_THREADS, 0, stream>>>(nums, op, input0, input1, output);
|
||||
}
|
||||
|
||||
template void Broadcast(const int &l0, const int &l1, const int &l2, const int &l3, const int &r0, const int &r1,
|
||||
const int &r2, const int &r3, const int &d0, const int &d1, const int &d2, const int &d3,
|
||||
enum BroadcastOpType op, const float *input0, const float *input1, bool *output,
|
||||
cudaStream_t stream);
|
||||
template void Broadcast(const int &l0, const int &l1, const int &l2, const int &l3, const int &r0, const int &r1,
|
||||
const int &r2, const int &r3, const int &d0, const int &d1, const int &d2, const int &d3,
|
||||
enum BroadcastOpType op, const float *input0, const float *input1, float *output,
|
||||
cudaStream_t stream);
|
||||
|
||||
template void NoBroadcast(const int &nums, enum BroadcastOpType op, const float *input0, const float *input1,
|
||||
bool *output, cudaStream_t stream);
|
||||
template void NoBroadcast(const int &nums, enum BroadcastOpType op, const float *input0, const float *input1,
|
||||
float *output, cudaStream_t stream);
|
@ -0,0 +1,40 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BROADCAST_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BROADCAST_H_
|
||||
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
enum BroadcastOpType {
|
||||
BROADCAST_TYPE_GREATER = 0,
|
||||
BROADCAST_TYPE_LESS = 1,
|
||||
BROADCAST_TYPE_MAXIMUM = 2,
|
||||
BROADCAST_TYPE_MINIMUM = 3,
|
||||
BROADCAST_TYPE_POWER = 4,
|
||||
BROADCAST_TYPE_INVALID = 0xffffffff,
|
||||
};
|
||||
|
||||
template <typename T, typename S>
|
||||
void Broadcast(const int &l0, const int &l1, const int &l2, const int &l3, const int &r0, const int &r1, const int &r2,
|
||||
const int &r3, const int &d0, const int &d1, const int &d2, const int &d3, enum BroadcastOpType op,
|
||||
const T *input0, const T *input1, S *output, cudaStream_t stream);
|
||||
|
||||
template <typename T, typename S>
|
||||
void NoBroadcast(const int &size, enum BroadcastOpType op, const T *input0, const T *input1, S *output,
|
||||
cudaStream_t stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_BROADCAST_H_
|
@ -0,0 +1,40 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/math/broadcast_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Greater,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeBool),
|
||||
BroadcastOpGpuKernel, float, bool)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Less, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeBool),
|
||||
BroadcastOpGpuKernel, float, bool)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Maximum,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastOpGpuKernel, float, float)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Minimum,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastOpGpuKernel, float, float)
|
||||
MS_REG_GPU_KERNEL_TWO(
|
||||
Pow, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastOpGpuKernel, float, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,132 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_BROADCAST_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_BROADCAST_GPU_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/broadcast_impl.cuh"
|
||||
#include "kernel/gpu/kernel_constants.h"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T, typename S>
|
||||
class BroadcastOpGpuKernel : public GpuKernel {
|
||||
public:
|
||||
BroadcastOpGpuKernel()
|
||||
: op_type_(BROADCAST_TYPE_INVALID), need_broadcast_(false), input1_num_(1), input2_num_(1), output_num_(1) {}
|
||||
~BroadcastOpGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override {
|
||||
T *lhs = GetDeviceAddress<T>(inputs, 0);
|
||||
T *rhs = GetDeviceAddress<T>(inputs, 1);
|
||||
S *output = GetDeviceAddress<S>(outputs, 0);
|
||||
|
||||
if (need_broadcast_) {
|
||||
Broadcast(lhs_shape_[0], lhs_shape_[1], lhs_shape_[2], lhs_shape_[3], rhs_shape_[0], rhs_shape_[1], rhs_shape_[2],
|
||||
rhs_shape_[3], output_shape_[0], output_shape_[1], output_shape_[2], output_shape_[3], op_type_, lhs,
|
||||
rhs, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
} else {
|
||||
NoBroadcast(output_num_, op_type_, lhs, rhs, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
GetOpType(kernel_node);
|
||||
auto shape1 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto shape2 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
auto shape3 = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
need_broadcast_ = IsBroadcast(shape1, shape2);
|
||||
if (need_broadcast_ && shape1.size() > 4) {
|
||||
MS_LOG(EXCEPTION) << "Broadcast operation not support dim greater than 4";
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < shape1.size(); i++) {
|
||||
lhs_shape_[i] = shape1[i];
|
||||
rhs_shape_[i] = shape2[i];
|
||||
output_shape_[i] = shape3[i];
|
||||
|
||||
input1_num_ *= shape1[i];
|
||||
input2_num_ *= shape2[i];
|
||||
output_num_ *= shape3[i];
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override { return; }
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input1_num_ * sizeof(T));
|
||||
input_size_list_.push_back(input2_num_ * sizeof(T));
|
||||
output_size_list_.push_back(output_num_ * sizeof(S));
|
||||
}
|
||||
|
||||
private:
|
||||
void GetOpType(const CNodePtr &kernel_node) {
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
|
||||
static std::map<std::string, BroadcastOpType> kBroadcastTypeMap = {
|
||||
{"Greater", BROADCAST_TYPE_GREATER}, {"Less", BROADCAST_TYPE_LESS}, {"Maximum", BROADCAST_TYPE_MAXIMUM},
|
||||
{"Minimum", BROADCAST_TYPE_MINIMUM}, {"Pow", BROADCAST_TYPE_POWER},
|
||||
};
|
||||
|
||||
auto iter = kBroadcastTypeMap.find(kernel_name);
|
||||
if (iter == kBroadcastTypeMap.end()) {
|
||||
MS_LOG(EXCEPTION) << "operation " << kernel_name << " is not supported.";
|
||||
} else {
|
||||
op_type_ = iter->second;
|
||||
}
|
||||
}
|
||||
|
||||
bool IsBroadcast(const std::vector<size_t> &lhs, const std::vector<size_t> &rhs) {
|
||||
for (size_t i = 0; i < lhs.size(); i++) {
|
||||
if (lhs[i] != rhs[i]) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
BroadcastOpType op_type_;
|
||||
bool need_broadcast_;
|
||||
int input1_num_;
|
||||
int input2_num_;
|
||||
int output_num_;
|
||||
int lhs_shape_[4] = {1, 1, 1, 1};
|
||||
int rhs_shape_[4] = {1, 1, 1, 1};
|
||||
int output_shape_[4] = {1, 1, 1, 1};
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_BINARYOP_GPU_KERNEL_H_
|
@ -0,0 +1,81 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.context as context
|
||||
import numpy as np
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_nobroadcast():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
|
||||
x1_np = np.random.rand(10, 20).astype(np.float32)
|
||||
x2_np = np.random.rand(10, 20).astype(np.float32)
|
||||
|
||||
output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.minimum(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.maximum(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = x1_np > x2_np
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = x1_np < x2_np
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.power(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
|
||||
x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||||
x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
|
||||
|
||||
output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.minimum(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.maximum(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = x1_np > x2_np
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = x1_np < x2_np
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
||||
|
||||
output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
|
||||
output_np = np.power(x1_np, x2_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np)
|
Loading…
Reference in new issue