implement parallel Split

pull/6548/head
Yi Huaijie 5 years ago
parent 97e8742f84
commit 18ed2bec53

@ -201,6 +201,8 @@ using TileCost = SoftmaxCost;
using TileCostPtr = std::shared_ptr<TileCost>;
using ConcatCost = TileCost;
using ConcatCostPtr = std::shared_ptr<ConcatCost>;
using SplitCost = TileCost;
using SplitCostPtr = std::shared_ptr<SplitCost>;
class TmpIdentityCost : public OperatorCost {
public:

@ -179,6 +179,7 @@ REGISTER(TileInfo);
REGISTER(StridedSliceInfo);
REGISTER(DropoutInfo);
REGISTER(ConcatInfo);
REGISTER(SplitInfo);
} // namespace parallel
} // namespace mindspore

@ -40,5 +40,6 @@
#include "frontend/parallel/ops_info/tile_info.h"
#include "frontend/parallel/ops_info/strided_slice_info.h"
#include "frontend/parallel/ops_info/concat_info.h"
#include "frontend/parallel/ops_info/split_info.h"
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_

File diff suppressed because it is too large Load Diff

@ -0,0 +1,60 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SPLIT_INFO_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SPLIT_INFO_H_
#include <string>
#include <memory>
#include "ir/value.h"
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
#include "frontend/parallel/ops_info/operator_info.h"
#include "frontend/parallel/strategy.h"
namespace mindspore {
namespace parallel {
class SplitInfo : public OperatorInfo {
public:
SplitInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<ConcatCost>(false)) {}
~SplitInfo() override = default;
Status Init(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int32_t) override;
std::shared_ptr<Strategys> GenerateBatchStrategies() override;
Status SetCostUnderStrategy(const StrategyPtr &) override;
protected:
Status GetAttrs() override;
Status CheckStrategy(const StrategyPtr &strategy) override;
Status InferMirrorOps() override;
Status InferForwardCommunication() override { return SUCCESS; }
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferTensorMap() override;
Status InferAsLossDivisor() override;
private:
size_t axis_ = 0;
size_t output_num_ = 0;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SPLIT_INFO_H_

@ -263,7 +263,7 @@ bool IsSplittableOperator(const std::string &op_name) {
LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, CONCAT,
STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT,
SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS,
EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX};
EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT};
// clang-format on
auto iter = splittable_op.find(op_name);

@ -0,0 +1,147 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
import mindspore.context as context
from mindspore import Tensor, Parameter
import mindspore.nn as nn
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, Momentum
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None, strategy3=None):
super(Net, self).__init__()
self.split = P.Split(axis, out_nums).shard(strategy1)
self.mul = P.Mul().shard(strategy2)
self.matmul = P.MatMul(transpose_b=True).shard(strategy2)
self.matmul2 = P.MatMul().shard(strategy3)
self.weight = Parameter(mul_weight, "w1")
def construct(self, x):
out = self.mul(x, self.weight)
out1, out2, out3 = self.split(out)
out = self.matmul(out1, out2)
out = self.matmul2(out, out3)
return out
class Net1(nn.Cell):
def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None):
super(Net1, self).__init__()
self.split = P.Split(axis, out_nums).shard(strategy1)
self.mul = P.Mul().shard(strategy2)
self.weight = Parameter(mul_weight, "w1")
def construct(self, x):
out1, out2 = self.split(self.weight)
out = self.mul(x, out1)
out = self.mul(out, out2)
return out
class Net2(nn.Cell):
def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None):
super(Net2, self).__init__()
self.split = P.Split(axis, out_nums).shard(strategy1)
self.mul = P.Mul().shard(strategy2)
self.weight = Parameter(mul_weight, "w1")
def construct(self, x):
out = self.mul(x, self.weight)
out1, _ = self.split(out)
return out1
_w = Tensor(np.ones([48, 64]), dtype=ms.float32)
_x = Tensor(np.ones([48, 64]), dtype=ms.float32)
_w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32)
_x1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32)
_w2 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32)
def compile_net(net):
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
_executor.compile(train_net, _x)
context.reset_auto_parallel_context()
def compile_net1(net):
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
_executor.compile(train_net, _x1)
context.reset_auto_parallel_context()
def test_split_parameter():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 2),)
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net1(_w1, 0, 2, strategy1, strategy2)
compile_net1(net)
def test_split_parameter_no_full_split():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 2, 2),)
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net1(_w1, 0, 2, strategy1, strategy2)
compile_net1(net)
def test_split_tensor():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 8),)
strategy2 = ((1, 8), (1, 8))
strategy3 = ((1, 1), (1, 8))
net = Net(_w, 0, 3, strategy1, strategy2, strategy3)
compile_net(net)
def test_split_output():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 2),)
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net2(_w2, 0, 2, strategy1, strategy2)
compile_net1(net)
def test_split_output_no_full_split():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 2, 2),)
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net2(_w2, 0, 2, strategy1, strategy2)
compile_net1(net)
def test_split_no_strategy():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = None
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net2(_w2, 0, 2, strategy1, strategy2)
compile_net1(net)
def test_split_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net2(_w2, 0, 2)
compile_net1(net)
Loading…
Cancel
Save